当前位置:首页 > 思想汇报 > 反演叶面积指数 基于高光谱数据的叶面积指数遥感反演_李子扬
 

反演叶面积指数 基于高光谱数据的叶面积指数遥感反演_李子扬

发布时间:2019-07-25 09:40:39 影响了:

第43卷第3期

Vol.43No.3

红外与激光工程

Infrared and Laser Engineering

2014年3月

Mar .2014

基于高光谱数据的叶面积指数遥感反演

李子扬1,2,钱永刚1,申庆丰3,马灵玲1,孔祥生4王宁1,刘耀开1,(1.中国科学院光电研究院定量遥感信息技术重点实验室,北京100094;2. 中国科学院大学,北京100049;3. 中国运载火箭技术研究院,北京100076;

4. 鲁东大学地理与规划学院,山东烟台264025)

要:文中耦合叶片辐射传输模型(PROSPECT)和冠层辐射传输模型(SAILH),基于高光谱载荷通

道设置,模拟高光谱冠层反射率数据;利用模拟数据深入分析了不同植被指数与叶面积指数之间的敏感性;通过敏感性分析发现改进型叶绿素吸收植被指数(MCARI2)具备抗土壤背景因素的影响能力,而且对叶面积指数较为敏感,因此该研究建立植被指数MCARI2与叶面积指数之间的经验统计模型,并用于高光谱数据进行叶面积指数反演;最后利用飞行同步测量的叶面积指数对反演模型进行精度分析。结果表明:相比实测叶面积指数,文中建立的反演模型约低估0.42,该反演模型能够较好的反映出地物真实叶面积指数。

关键词:叶面积指数;植被指数;高光谱数据中图分类号:TP701

文献标志码:A

文章编号:1007-2276(2014)03-0944-06

Leaf area index retrieval from remotely sensed hyperspectral data

Li Ziyang 1,2, Qian Yonggang 1, Shen Qingfeng 3, Wang Ning 1, Liu Yaokai 1,

Ma Lingling 1, Kong Xiangsheng 4

(1.Key Laboratory of Quantitative Remote Sensing Information Technology, Academy of Opto -Electronics, Chinese Academy

of Sciences, Beijing 100094, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China;

3. China Academy of Launch Vehicle Technology(CALT),Beijing 100076, China; 4. College of Geography and Planning, Ludong University, Yantai 264025, China)

Abstract:An experimental leaf area index (LAI)retrieval model was proposed with the aid of a leaf -radiative transfer model (PROSPECT)and a canopy bidirectional reflectance model (SAILH)to simulate the canopy reflectance in this paper. Then, the vegetation indices (VIs)were introduced, and the sensitivities were analyzed between LAI and VIs, soil background. Based on the sensitivity analysis, a modified chlorophyll ratio index II (MCARI2)was proposed by Haboudane et al.

(2004)was used to

build the LAI retrieval model, because it is rather sensitive to the LAI and insensitive to soil background. Finally, the retrieval model proposed was performed to estimate LAI from the hyperspectral data. Compared with the ground -measured LAI, the LAI retrieved from hyperspectral data underestimate approximately 0.42. Key words:leaf area index;

收稿日期:2013-07-21;

vegetation index; hyperspectral data

修订日期:2013-08-25

基金项目:国家863计划(2012AA12A302);国家自然科学基金(41101330,41371353,40901176,41271342)

作者简介:李子扬(1977-),男,研究员,硕士生导师,博士,主要从事遥感地面系统及遥感应用方面的研究。Email:zyli@aoe.ac.cn通讯作者:钱永刚(1980-),硕士生导师,博士,主要从事定量遥感地表参数反演及应用方面的研究。Email:qianyg@aoe.ac.cn

第3期

李子

扬等:基于高光谱数据的叶面积指数遥感反演

945

反演过程的流程图。

0引言

叶面积指数(LeafArea Index ,LAI) 是表征植被冠层结构最基本的参数之一,影响着植被的生物、物理过程[1]。LAI 通常被定义为单位地面面积上总叶面积的一半[2]。目前大区域范围内LAI 获取通常采用遥感反演的方式。LAI 遥感反演方法主要有经验统计法和物理模型反演法。

经验统计方法从植被独有的光谱特征出发,利用健康绿色植物在红光和近红外波段的反射特性差异建立植被指数,进而利用植被指数与LAI 的统计关系进行反演。该类方法形式简单,需要的参数少,被广泛应用于局部LAI 参数反演,并发展了基于多种植被指数(如归一化植被指数[3]或者改进叶绿素吸收指数) 的反演模型。然而该方法缺乏物理基础,建

[4]

图1植被指数方法反演叶面积指数流程图

Fig.1Flowchart of leaf area index retrieval from vegetation index

文中通过PROSPECT 和SAILH 模型联合模拟植被冠层反射率,在此基础上分析了不同条件下8种植被指数与LAI 的敏感性,选取其中最敏感的叶绿素吸收植被指数(MCARI2)并建立其与LAI 之间的经验统计模型。基于该模型和无人机获取的高光谱遥感数据,反演得到研究区的LAI ,最后利用实测不同地物类型的LAI 数据对反演结果进行了验证,并给出了精度分析。

立的经验关系仅适用于特定的时间和区域。相对而言,物理模型反演法从植被的辐射传输原理出发,具备较强的普适性和较高的反演精度。物理模型反演法可分为几何光学模型法、辐射传输模型法以及混合模型法。几何光学模型法考虑了植被冠层的二向性反射,但没有考虑冠层内多次散射;辐射传输模型法考虑了植被多次散射,但无法模拟植被冠层的二向性反射,尽管可加入热点效应模型[6],仍难以直接得到LAI 的解析解。由于不同方法具备独特的优势,近年来出现了各种混合模型,如基于物理模型与统计模型相结合的核驱动模型,取得了较好的反演精度。还出现了查找表法和非参数方法(如神经网

[7]

[5]

[5]

1.1辐射传输模型介绍

该研究耦合叶片辐射传输模型(PROSPECT)和冠层辐射传输模型(SAILH)得到大量模拟数据,为

LAI 反演模型建立提供数据源。

(1)PROSPECT 模型

PROSPECT 是一个基于“平板模型”的辐射传输模型。该模型以植被结构参数、叶片色素含量、等效水厚度和干物质含量为输入参数,能够模拟叶片从

络方法等) 。

中国科学院光电研究院牵头在内蒙古包头与贵州安顺建立了遥感载荷综合验证场,验证场配备有光谱、辐射和几何特性靶标,能够利用验证场开展光学、

400~2500nm 的上、下行辐射通量,进而得到叶片的光学特性,即叶片的反射率和透射率[8]。该模型输入参数较多,并且部分参数没有实测方法,参数设置带有主观经验性。Jacquemoud 等人根据实验室测量的玉米反射率和透过率,通过PROSPECT 模型估算得到叶肉结构参数的均值约为1.4[9]。Haboudane 等人将等效水厚度、干物质含量和叶肉结构参数分别设置为0.0015、0.0035和1.55作为各种庄稼(如玉米、大豆和小麦等) 的均值输入PROSPECT 模型[4]。

文中研究利用LOPEX ′93(LeafOptical Properties

SAR 载荷飞行测试实验。文中研究基于863项目“无人机遥感载荷综合验证系统”对内蒙古包头验证场无人机高光谱遥感载荷数据开展叶面积指数反演研究。

1方法

植被指数法是建立不同植被类型的植被指数与

LAI 之间的经验统计关系实现遥感反演。植被指数法是一种经验性方法,因而要求研究区内有足够的资料。文中研究基于植被指数方法反演LAI ,图1是

Experiment) 植物生化参数数据库作为PROSPECT 模型输入参数的选择基础。该数据库是由欧盟委员会联合中心的空间应用研究所实测获取的[10],包含70个

946红外与激光工程第43卷

叶片样本,代表了50种木本和草本植物。数据体现了叶片内部结构、色素含量、水分含量和其他组分含量的多样性。能够保证参数设置的合理性。

致植被指数与LAI 经验的关系不一致且系数各异。考虑到无人机获取的遥感影像高空间分辨率较高,土壤背景信息和植被信息都能很好的从影像中反映出来,因此,选择能够具有抵抗背景因素影响的植被指数对于LAI 反演尤为重要。

文中研究采用了归一化敏感性分析函数分析

(2)SAILH 模型

SAILH 模型是在SAIL(Scatteringby Arbitrarily Inclined Leaves) 模型的基础上加入了热点效应发展而来的。通过求解四流线性微分方程组以及引入考虑冠层热点效应的双向相关概率模型,进而计算连续植被冠层的方向反射率。SAILH 模型的输入参数包括角度参数、结构参数和光谱参数三部分,其中

LAI 与植被指数的敏感性[11],其公式如下:

Y

N X =X lim △Y =X d Y =d Y /Y =dln Y

Y

(1)

式中:N X 为归一化敏感性分析函数;X 为自变量

PROSPECT 模型的输出为SAILH 模型提供叶片的反射率和透射率。SAILH 模型涉及到多个输入参数,针对角度参数,文中研究采用无人机飞行中的观测角度、太阳角度等信息;结构参数主要有LAI 、叶倾角分布函数、热点因子,其中LAI 取值范围为0.2~

(LAI);Y 为因变量(光谱反射率/植被指数等) 。归一化敏感性分析函数的含义是参数X 变化某一固定比率时,因变量Y 变化的百分比。

图2给出了3种亮度不同的土壤背景下LAI 与植被指数之间的敏感性。从图2可以看出:8种植被

7;叶倾角分布函数采用椭球体叶倾角分布参数。1.2植被指数

现有用于反演LAI 的植被指数种类繁多,文中分析了较为常用的8种植被指数(见表1) 。

表1植被指数计算公式

Tab.1Equations of vegetation indices

Vegetation index Normalized difference

vegetation index (NDVI)Renormalized difference vegetation index (RDVI)Simple ratio index (SR)Modified simple ratio

index (MSR)Soil -adjusted vegetation

index (SAVI)Modified soil-adjusted vegetation index (MSAVI)Modified chlorophyll absorption ratio index

(MCARI)Modified chlorophyll absorption ratio index 2

(MCARI2)

Formulas

ρ800-ρ670800670

姨[1**********]0ρ800/ρ670

ρ800670

-1/

姨姨800670

+1

(1+L ) ρ800-ρ6708006701[2ρ+1-800

姨800800670][(ρ700-ρ670)-0.2(ρ700-ρ550)]

(ρ700/ρ550) 1.5[2.5(ρ800-ρ

670)-1.3(ρ800-ρ550)]

姨(2ρ800+1)2-(6ρ800-5姨670

) -0.5

注:ρ表示反射率,下标表示特定的波长。

1.3植被指数与LAI 敏感性分析

不同植被指数所考虑到的因素各不相同,因此土壤背景反射率、植被结构和叶绿素含量等因素导

图2基于归一化敏感性函数的植被指数与叶面积指数的敏感性

Fig.2Sensitivity of leaf area index to vegetation indexes with

normalized sensitivity analysis

第3期

李子

扬等:基于高光谱数据的叶面积指数遥感反演

947

指数的敏感性随着LAI 增大先增大后减小;RDVI 和表反射率需要经过大气校正。利用大气辐射传输模型逐像元进行大气校正是非常复杂的计算,需要占用大量的计算机时间和资源。因此,文中研究根据无人机高光谱成像仪的性能特点,通过大气辐射传输模型MODTRAN 建立了以气溶胶光学厚度、大气水汽含量、飞行高度、地表高程、太阳天顶角、观测天顶角和相对方位角为索引的多维大气参数查找表。利用与飞行试验同步探空气球测量的气溶胶光学厚度和大气水汽含量,结合太阳以及无人机载荷观测的几何参数(天顶角、方位角等) ,基于大气参数查找表反演无人机高光谱数据地表反射率。

NDVI 的敏感性最弱;MCARI 和SR 的敏感性最强,MCARI2和MSR 次之;随着土壤亮度的增强,MCARI 、SR 和MSR 的敏感性增强,MCARI2和MSAVI 对土壤背景表现出很小的敏感性。显然,各种植被指数对小于3的LAI 表现出最大的敏感性。同时可以看出,当LAI 范围在2.5~3.0时,NDVI 、

RDVI 、MCARI 、SAVI 和MSAVI 基本达到饱和状态;MSAVI 和MCARI2对土壤背景的敏感性最弱,尽管SR 和MSR 表现出更高的饱和性,但是当LAI 在小于3.5时对土壤背景影响敏感。

相比其他植被指数,MCARI2对LAI 具有更高的敏感性及高的抗土壤背景干扰能力。因此,文中研究选择MCARI2反演无人机高光谱数据的LAI 。两者之间的统计模型采用如下形式:

LAI 反演时需要依据不同植被类型进行模型建模,因此,首先采用监督分类方式对无人机高光谱数据进行了分类(见图3) 。

LAI=a ×exp(b ×MCARI2)+c ×exp(d ×MCARI2) (2)

式中:a ,b ,c ,d 为拟合系数。拟合系数的获取方法如下:利用不同LAI 值,结合叶片和冠层辐射传输模型

(PROSPECT+SAILH)模拟冠层反射率数据,进而构建植被指数MCARI2,最后基于不同植被类型分别拟合MCARI2和LAI ,得到上述4个拟合系数。

图3无人机高光谱载荷地表分类图

Fig.3Classification of the UAV hyperspectral data

2数据

2.1无人机高光谱数据和地面测量数据

2011年9月3日,基于863项目“无人机遥感载荷综合验证系统”,由中国科学院光电研究院组织在内蒙古(包头乌拉特前旗,经度:109.53°,纬度:40.88°) 开展了光学载荷科学试验飞行。此次试验沿飞行航线布设了经过严格测试的多种用途靶标,并同步获取了靶标地面光谱测量数据及场地气象参数数据,用于开展光学载荷辐射、几何、光谱性能定标与评价的工作。无人机平台所搭载的高光谱成像仪光谱范围为400~1030nm ,光谱分辨率为5nm ,瞬时视场角

3结果与分析

3.1叶面积指数反演结果

根据无人机高光谱数据的特点,针对不同的植被类型,利用PROSPECT+SAILH模型获取反演模型

(公式(2))的系数(详见表2) 。

表2不同植被类型下MCARI2与LAI 的拟合系数

Tab.2Fitting coefficients between MCARI2

and LAI

Vegeta -tion type Grass Rice

Fitting coefficient

R 2

a 8.148e-7

b 15.6

c 0.28520.23310.36040.31340.28240.3148

d 2.4582.8362.7923.2982.5822.368

0.94380.47870.92320.55970.96940.35310.92590.54990.9549

0.429RMSE

0.2mrad ,128个波段,地面分辨率1.6m@8km 。

LAI 反演及验证的工作主要在农业示范区开展。同时,飞行过程中在农业示范区内利用叶面积指数仪(LAI2200) 采集了3种作物(马铃薯、向日葵、玉米) 共13组的LAI 测量数据。考虑到作物的非均一性,每组试验测量3次,取其平均值作为验证数据。

2.845e-717.19

21.3611.215.9

Sunflower 4.353e-9Corn Potato

7.821e-55.919e-7

2.2载荷数据处理

机载平台载荷传感器获得的辐射亮度转换为地

Broadleaf

5.116e-410.45

forests

0.90140.6341

948红外与激光工程第43卷

研究通过利用PROSPECT+SAILH模型模拟出冠层反射率,再耦合无人机高光谱成像仪通道响应函数模拟出无人机高光谱地表反射率数据,并建立不同植被类型的LAI 反演模型,最终将模型应用于真实无人机高光谱数据中反演出地物的LAI ,图4是利用2011年9月3日的无人机高光谱数据反演的LAI 结果。

果能够较好反映出地物的LAI ,证明采用的

MCARI2能够反演得到精度较高的LAI 。

图6无人机叶面积指数地面实测反演结果图

Fig.6Measured and retrieved LAI from UAV hyperspectral data

图4北方场无人机叶面积指数反演结果

Fig.4Results of the retrieved LAI from UAV in the North Site

影响到反演精度的因素可能有以下几点:从地面测试实验中可以发现,传感器测量的是地物的“面”信息,而地面测量仪器测量的是地物“点”信息,尺度效应问题影响了LAI 的对比精度;其次,地面测试过程中发现向日葵地和马铃薯两种植被覆盖的均匀性较差,测量过程中不可避免地会引起一定的误差;再次,随着LAI 的增大,近红外通道趋于饱和,会对LAI 反演精度产生影响;同时,植物生化数据库(LOPEX′93) 测量的地物特性因地域差异、气候差异等因素也会有所不同,同样会对LAI 的反演精度产生一定的影响;最后,测量仪器本身也存在一定的测量误差,对验证结果的精度也会产生一定的影响。

3.2模型自身精度分析

模型自身精度分析主要利用模拟数据对反演模型进行评价。为了检验LAI 反演的模型精度,通过模拟数据对LAI 反演模型进行了模型精度评价。利用PROSPECT 和SAILH 模型模拟的地表反射率数据反演出不同地物的叶面积指数,再与输入到

PROSPECT 和SAILH 模型中的LAI 进行对比,得到LAI 反演的模型精度。模拟获取了六种植被类型(草地、水稻、向日葵、玉米、马铃薯、阔叶林) 的LAI 反演模型,图5是利用高光谱数据反演LAI 的误差结果图,可以看出,LAI 的反演误差均在7%以内。

4总结

文中利用叶片辐射传输模型(PROSPECT)和冠层辐射传输模型(SAILH)模拟植被冠层反射率,分析了不同条件下LAI 与植被指数的敏感性。发现常用于LAI 反演的归一化差值植被指数(NDVI)受土壤背景因素影响严重,而且当LAI>2时,基本处于饱和状态。此研究建立了具备抗土壤背景影响、对LAI

图5高光谱叶面积指数反演模型精度评估结果

敏感的改进型叶绿素吸收植被指数(MCARI2)与LAI 之间的经验统计模型,并成功用于无人机高光谱数据的LAI 反演。经实测数据验证表面,模型反演结果可以取得比较好的精度。尽管如此,考虑到经验统计方法的局限性,所建立的经验关系是针对特定的时

间和研究区

模型不具备普适性。今后对MCARI2的应用范围还需要进一步探讨。

Fig.5Accuracy assessment of the LAI retrieval model

3.3地面测量验证分析

地面同步获取的LAI 以玉米、向日葵和马铃薯这三类自然植被类型为主。利用地面准同步测量的

LAI 验证结果如图6所示。相比地面实测的数据,模型反演值偏低,均方根误差RMSE 为0.42。但反演结

第3期

李子扬等:基于高光谱数据的叶面积指数遥感反演

949

刘晓臣, 范闻捷, 田庆久, 等. 不同叶面积指数反演方法比

参考文献:

[1]

Chen J M, Cihlar J. Retrieving leaf area index of boreal conifer forests using Landsat TM images[J].Remote Sensing of Environment , 1996, 55:153-162. [2]

Chen J M, Pavlic G, Brown L, et al. Derivation and validation of Canada -wide coarse -resolution leaf area index maps using high -resolution satellite imagery and ground measurements [J].Remote Sensing of Environment , 2001, 80:165-184. [3]

Price J C, Baush W C. Leaf area index estimation from visible and near -infrared reflectance data[J].Remote Sensing of Environment , 1995, 52:55-65. [4]

Haboudane D, John R M, Patteyc E, et al. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies:modeling and validation in the context of precision agriculture [J].Remote Sensing of Environment , 2004, 90:337-352. [5]

Liu Xiaochen, Fan Wenjie, Tian Qingjiu, et al. Comparative analysis among different methods of leaf area index inversion [J].Acta Scientiarum Naturalium Universitatis Pekinensis , 2008, 2:57-64. (inChinese)

[11][9][8][7][6]

较研究[J].北京大学学报(自然科学版), 2008, 2:57-64.

Jupp D L B, Strahler A H. A hot spot model for leaf canopies [J].Remote Sensing of Environment , 1991, 38:193-210.

Li Xiaowen, Strahler A H. A hypid geometric optical radiative

transfer

approach

for

modeling

albedo

and

directional reflectance of discontinuous canopies [J].IEEE Transactions Geoscience Remote Sensing , 1995, 33:466-48Jacquemoud S. Prospect:A model of leaf optical properties [J].Remote Sensing of Environment , 1990, 34:75-91. Jacquemoud S, Bacour C, Poilve H, et al. Comparison of four radiative transfer models to simulate plant canopies reflectance:direct and inverse mode [J].Remote Sensing of Environment , 2000, 74(3):471-481.

[10]Hosgood B, Jacquemoud S, Andreoli G, et al. Leaf optical

properties experiment 93(LOPEX93)[R].Report EUR 16095EN, 1994.

Gonsamo A. Normalized sensitivity measures for leaf area index estimation using three band spectral vegetation indices [J].International Journal of Remote Sensing , 2010, 32(7):2069-2080.

猜你想看
相关文章

Copyright © 2008 - 2022 版权所有 职场范文网

工业和信息化部 备案号:沪ICP备18009755号-3