当前位置:首页 > 申请书大全 > 电场中的导体_21导体中的电场和电流
 

电场中的导体_21导体中的电场和电流

发布时间:2019-07-21 09:52:14 影响了:

2.1导体中的电场和电流

教学目标:

(一)知识与技能

1、了解电源的形成过程。 2、掌握恒定电场和恒定电流的形成过程。

(二)过程与方法:在理解恒定电流的基础上,会灵活运用公式计算电流的大小。

(三)情感、态度与价值观:通过本节对电源、电流的学习,培养将物理知识应用于生活和生产实践的意识,勇于探究与日常生活有关的物理问题。

教学重、难点:理解电源的形成过程及电流的产生。会灵活运用公式计算电流的大小。 教学方法:探究、讲授、讨论、练习

教学手段:投影片,多媒体辅助教学设备

教学过程:

(一)引入新课

教师:人类通过对静电场的研究不仅获得了许多关于电现象的知识,而且形成了若干重要的电学概念和研究方法,成为电学理论的重要基础。

但是,无论在自然界还是生产和生活领域,更广泛存在着的是电荷流动所引起的效应。那么,电荷为什么会流动?电荷流动服从什么规律,产生哪些效应?这些效应对人类的生产、生活方式和社会进步又起着怎样的作用呢?

过渡:这节课就来学习有关电流的知识。(板书课题:导体中的电场和电流)

(二)进行新课

教师活动:为什么雷鸣电闪时,强大的电流能使天空发出耀眼的强光,但它只能存在于一瞬间,而手电筒中的小灯泡却能持续发光?

通过现象对比,激发学生的求知欲。调动学生的学习积极性。

过渡:要回答这个问题,就要从电源的知识学起。

1.电源

教师:(投影)教材图2.1-1,(如图所示)

分别带正、负电荷的A、B两个导体球,它们的周围存在电场。如果用一条导线R将它们连接起来,分析A、B周围的电场、A、B之间的电势差会发生什么变化?最后,A、B两个导体球会达到什么状态?R中出现了怎样的电流?

学生活动:在教师的引导下,分析A、B周围的电场、A、B之间的电势差的变化情况。认识到,最终A、B两个导体球会达到静电平衡状态。理解导线R中的电流只能是瞬时的。

教师:(投影)教材图2.1-2,(如图所示)

提出问题:如果在AB之间接上一个装置P,它能把经过R流到A的电子取走,补充给B,使AB始终保持一定数量的正、负电荷,情况会怎样呢?

引导学生讨论、解释可能会产生的现象。培养、锻炼学生的

思维能力。通过学生回答,发表见解,培养学生语言表达能力。

师生互动,建立起电源的概念。

思考:电源P在把电子从A搬运到B的过程中,电子的电势

能如何变化?电源发挥了怎样的作用?

过渡:在有电源的电路中,导线内部的电场强度有何特点呢?

2、导线中的电场

教师:(投影)教材图2.1-3,(如图所示)

介绍图中各部分的意义,取出图中方框中的一小段导线及电场

线放大后进行研究,如图2.1-4所示。

教师引导学生讨论导线中的电场将如何变化,最终又会达到怎

样的状态。要把思维的过程展现给学生。

说明:教师要引导学生运用微元法和矢量叠加的方法,探究导线中电场的变化情况,分析出最终导线两侧积累的电荷将达到平衡状态,垂直于导线方向上电场的分量将减为零,导线内的电场线保持和导线平行。这里一定要强调,这是电源电场和导线两侧的电荷得电场共同叠加的结果。

通过师生分析,建立起恒定电场的概念。引导学生理解电荷的“稳定分布”是一个动态平衡的过程,不是静止不变的。

思考:在静电场中所学的电势、电势差及其与电场强度的关系等,在恒定电场中还是否适用呢?

过渡:在恒定电场中自由电荷会受到电场力的作用,而发生定向运动,从而形成电流,恒定电场中的电流有何特点,又如何描述呢?

3、恒定电流

教师:恒定电场中的电流是恒定不变的,称为恒定电流(为什么?)。

电流的强弱就用电流这个物理量来描述。

电流的定义:物理上把通过导体横截面的电荷量q跟通过这些电荷量所用的时间t的比值称为电流。用I表示电流。电流的定义式是什么?

学生:I=q t

教师:回忆一下初中学过的知识,电流的单位有哪些?它们之间的关系是什么? 学生:在国际单位制中,电流的单位是安培,简称安,符号是A。

电流的常用单位还有毫安(mA)和微安(μA)。

它们之间的关系是: 1 mA=10-3A; 1μA=10-6A

教师:1A的物理意义是什么?

学生:如果在1 s内通过导体横截面的电荷量是1 C,导体中的电流就是1 A。即1A=1 C/s [投影]教材42页例题,教师引导学生分析题意,构建物理模型,培养学生分 通过师生分析,建立起恒定电场的概念。引导学生理解电荷的“稳定分布”是一个动态平衡的过程,不是静止不变的。

思考:在静电场中所学的电势、电势差及其与电场强度的关系等,在恒定电场中还是否适用呢?

过渡:在恒定电场中自由电荷会受到电场力的作用,而发生定向运动,从而形成电流,恒定电场中的电流有何特点,又如何描述呢?

师生共同分析课本上的例题1。

师生互动:讨论,如果认为电子的定向运动速率就是电流的传导速率,和我们的生活经验是否相符?怎样解释?

点评:通过对结论的讨论,深化对物理概念和规律的理解。

(三)课堂总结、点评

(四)实例探究

☆关于电流的方向

【例1】关于电流的方向,下列叙述中正确的是___C____

A.金属导体中电流的方向就是自由电子定向移动的方向

B.在电解质溶液中有自由的正离子和负离子,电流方向不能确定

C.不论何种导体,电流的方向规定为正电荷定向移动的方向

D.电流的方向有时与正电荷定向移动方向相同,有时与负电荷定向移动方向相同 电流是有方向的,电流的方向是人为规定的。物理上规定正电荷定向移动的方向为电流的方向,则负电荷定向移动的方向一定与电流的方向相反。

☆关于电流的计算

【例2】某电解质溶液,如果在1 s内共有5.0×1018个二价正离子和1.0×1019个一价负离子通过某横截面,那么通过电解质溶液的电流强度是多大?

解析:设在t=1 s内,通过某横截面的二价正离子数为n1,一价离子数为n2,元电荷的电荷量为e,则t时间内通过该横截面的电荷量为q=(2n1+n2)e

q(2n1n2)e25.010181.01019

电流强度为I===×1.6×10-19A=3.2 A 1tt

【例3】氢原子的核外只有一个电子,设电子在离原子核距离为R的圆轨道上做匀速圆周运动。已知电子的电荷量为e,运动速率为v,求电子绕核运动的等效电流多大?

解析:取电子运动轨道上任一截面,在电子运动一周的时间T内,通过这个截面的电量q=e,由圆周运动的知识有:

T=

练习:完成练习册上的相应的题目。 qev2R 根据电流的定义式得:I= t2Rv

2.2电动势

教学目标:

(一)知识与技能:理解电动势的概念,掌握电动势的定义式。

(二)过程与方法:通过本节课教学,使学生了解电池内部能量的转化过程,加强对学生科学素质的培养,。

(三)情感、态度与价值观:了解生活中的电池,感受现代科技的不断进步。 教学重、难点:电动势的概念,对电动势的定义式的应用。

电池内部能量的转化;电动势概念的理解。

教学方法:探究、讲授、讨论、练习

教学手段:各种型号的电池,手摇发电机,多媒体辅助教学设备

教学过程:

(一)引入新课

教师:引导学生回顾上节课学习的“电源”的概念。

在教材图2.1-2中电源的作用是什么?

教师:(投影)(如图所示)

学生思考,选出代表回答:电源能够不断地将电子从A

搬运到B,从而使A、B之间保持一定的电势差;电源能够使

电路中保持持续电流。

教师:电源P在把电子从A搬运到B的过程中,电子的电势能如何变化?从另一个角度看,电源又发挥了怎样的作用?

学生思考,选出代表回答:电子的电势能增加了。电源为电路提供了电能。

教师:自然界中的能量是守恒的,电源为电路提供了电能,必然会有其他形式的能量减少,从能量转化和守恒的角度,你认为电源是个怎样的装置呢?

学生思考,选出代表回答:电源是把其他形式能转化为电能的装置。

过度:电源又是如何把其他形式能转化为电能的呢?不同的电源把其他形式的能转化为电能的本领一样吗?这个本领用什么来描述呢?

(二)进行新课

1、电源

教师:(投影)教材图2.2-1(如图所示)

教师:(1)用导线将电源连成最简单的电路,电路由哪几

部分组成?

(2)导线中的电场是什么电场?电流是怎样形成的?特点

如何?为什么?

学生思考,回答:(1)电路由两部分组成,电源外部能看得见的部分,称为外电路;电源内部看不见的部分,称为内电路。

(2)导线中的电场是恒定电场。导线中的自由电子在电场力的作用下从电源正极向负极定向运动,形成电流。导线中的电流是恒定电流,因为导线中的电场是恒定电场,所以电子定向运动的速率是不变的,电流大小恒定。

教师:自由电子在导线中定向运动,电场力做什么功?电子的电势能如何变化? 学生:正功;减少。

教师:自由电子定向运动的速率是不变的,能量还守恒吗?该怎样理解?

学生:守恒。自由电子与带正电的离子相互碰撞,

在定向运动过程中受到阻力作用,电

子要不断克服阻力做功,其动能向热能转化。

教师总结:大家说的对,概括地说,在电源外部,电场力对自由电子做正功,是电能转化为其他形式能,这个过程中消耗了电能。这些电能又是哪里来的呢?

学生:电源把其他形式能转化为电能。

教师:根据前面的分析,大家讨论一下,电源是如何把其他形式能转化为电能的呢? 学生思考,分组讨论,选出代表回答。

点评:给学生创造思考、探究的空间,培养学生的探究精神和学习热情,培养学生交流合作的品质。通过学生的回答,培养表达能力。

学生代表回答:在电源内部也存在电场,电场方向也是从正极指向负极。根据电荷守恒定律,电源必须把自由电子不断地从正极搬运到负极,自由电子必须克服电场力做功,这就需要有“非静电力”作用于电子。这个“非静电力”是电源提供的。也就是说,电源通过非静电力做功,使电荷的电势能增加了。

教师点评、总结,引导学生建立起电源的概念:电源是通过非静电力做功把其他形式能转化为电能的装置。

教师:出示干电池、手摇发电机,提出问题:干电池、手摇发电机都可以做电源,这些电源中的非静电力相同吗?所起的作用相同吗?谈谈你的看法。

学生思考,分组讨论,选出代表回答。

干电池中的非静电力是化学作用,手摇发电机的非静电力是电磁作用,前者把化学能转化为电能,后者把机械能转化为电能。非静电力虽然不同,但从能量转化的角度看,他们所起的作用是相同的,都是把其他形式能转化为电能。

点评:再次加深学生对概念的理解。

教师:电源有好多种,他们在把其他形式能转化为电能的本领相同吗?举例说明。 学生举例:手电筒、家用照明电灯、汽车上的照明电灯等,亮度不同。

教师:在物理学上,该如何描述电源的这种本领呢?(承上启下,过渡到下一问题)

2、电动势

教师:引导学生从静电力对电荷做功,电荷电势能增加的角度建立起电动势的概念。 思考问题:是不是静电力对电荷做的功越多,静电力做功的本领越大?该如何描述静电力做功的本领?

学生思考,分组讨论,选出代表回答。

静电力对电荷做功的多少与电荷的数量有关,不能用做功多少来反映做功的本领。 静电力把相同数量的电荷从电源的一个极搬运到另一极,做功越多,电荷获得的电势能就越多,可以用静电力做功与电荷量的比值来反映静电力做功的本领。

教师:电动势也是用比值定义的物理量,请把电动势的定义完整地说出来。并写出电动势的定义式。说明给物理量符号的意义和单位。

学生思考,得出电动势的定义,并写出电动势的定义式。

如果电源移送电荷q时非静电力所做的功为W,那么W与q的比值W,叫做电源的电q

动势。用E表示电动势,则:EW q

式中W,q的单位分别是焦耳(J)、库仑(C);电动势E的单位与电势、电势差的单位相同,是伏特(V)。

电动势由电源中非静电力的特性决定,跟电源的体积无关,也跟外电路无关。

教师:电动势E的单位与电势、电势差的单位相同,电动势和电势差的物理意义有何不同呢?

学生思考,分组讨论,选出代表回答。 电动势:EW。W表示正电荷从负极移到正极所消耗的化学能(或其它形式能), Eq

表示移动单位正电荷消耗化学能(或其它形式能),反映电源把其它形式能转化为电能的本领)。 电压:UW。W表示正电荷在电场力作用下从一点移到另一点所消耗的电势能,电q

压表示移动单位正电荷消耗的电势能。反映把电势能转化为其它形式能的本领。

电动势表征电源的性质,电势差表征电场的性质。

教师指出:电源内部也是由导体组成的,也存在电阻。这个电阻叫做电源的内阻,大小由电源自身特点决定。内阻和电动势都是反映电源特性的物理量。

(三)课堂总结、点评

(四)实例探究

☆对电源电动势的理解

【例1】下列关于电源的说法,正确的是( BD )

A.电源向外提供的电能越多,表示电动势越大。

B.电动势在数值上等于电源将单位正电荷从负极移送到正极时,非静电力所做的功

C.电源的电动势与外电路有关,外电路电阻越大,电动势就越大

D.电动势越大的电源,将其他形式的能转化为电能的本领越大

☆对电动势定义式的应用

【例2】铅蓄电池的电动势为2 V,一节干电池的电动势为1.5V,将铅蓄电池和干电池分别接入电路,两个电路中的电流分别为0.1A和0.2A。试求两个电路都工作20 s时间,电源所消耗的化学能分别为多少?哪一个电源把化学能转化为电能的本领更大?

解析:对于铅蓄电池的电路,20 s时间内通过的电荷量为q1=I1t=2 C,

对于干电池的电路,20 s时间内通过的电荷量为q2=I2t=4C, 由电动势的定义式EW得电源消耗的化学能分别为 q

W1Q1E14J

W2Q2E26J

电动势反映电源把其他能转化为电能本领的大小,电动势越大,电源本领越大。故铅蓄电池把化学能转化为电能的本领更大。

作业:1、课下阅读课本第44页阅读材料《生活中的电池》

2、课下阅读课本第45页“做一做”,各学习小组对常用可充电电池进行调查,形成书面材料,同学之间进行交流。

3、完成P46“问题与练习”第1、2、3题。

2.3欧姆定律

教学目标:

(一)知识与技能

1、知道什么是电阻及电阻的单位。

2、.理解欧姆定律,并能用来解决有关电路的问题。

3、知道导体的伏安特性,知道什么是线性元件和非线性元件。

(二)过程与方法

1、通过演示实验探究电流大小的决定因素,培养学生的实验观察能力。

2、运用数学图象法处理物理问题,培养学生运用数学进行逻辑推理的能力。

(三)情感、态度与价值观:通过介绍欧姆的研究过程和“欧姆定律”的建立,激发学生的创新意识,培养学生在逆境中战胜困难的坚强性格。

重点:欧姆定律的内容、表达式、适用条件及利用欧姆定律分析、解决实际问题。 难点:伏安特性曲线的物理意义。

教学方法:探究、讲授、讨论、练习

教学手段:电源、电压表、电流表、滑动变阻器、电键、导体A、B(参考教材图2.3-1)、晶体二极管、投影片、多媒体辅助教学设备

教学过程:

(一)引入新课

同学们在初中已经学过了欧姆定律的一些基础知识,今天我们要在初中学习的基础上,进一步学习欧姆定律的有关知识。

(二)进行新课

1、欧姆定律

教师:既然在导体的两端加上电压,导体中才有电流,那么,导体中的电流跟导体两端的电压有什么关系呢?下面我们通过实验来探究这个问题。

演示实验:投影教材图2.3-1(如图所示)

教师:请一位同学简述如何利用如图所示的实验电路来研究

导体A中的电流跟导体两端的电压的关系?

学生:合上电键S,改变滑动变阻器上滑片P的位置,使导

体两端的电压分别为0、2.0 V、4.0 V、6.0 V、8.0 V,记下不同电

压下电流表的读数,然后通过分析实验数据,得出导体中的电流

跟导体两端电压的关系。

教师:选出学生代表,到讲台上读取实验数据。将得到的实验数据填写在表格中。

换用另一导体B,重复实验。

学生:用图象法。在直角坐标系中,用纵轴表示电压U,用横轴表示电流I,根据实验数据在坐标纸上描出相应的点。根据这些点是否在一条直线上,来研究导体中的电流跟它两端的电压的关系。

教师:请一位同学上黑板作U-I图线。其他学生在练习本上作。

学生:作图,如图所示。

教师:这种描点作图的方法,是处理实验数据的一种基本方

法,同学们一定要掌握。

分析图象,我们可以得到哪些信息?

学生:对于同一导体,U-I图象是过原点的直线,电压和电流

的比值等于一个常数。这个比值可以写成:R=U I

对于不同的导体,这个比值不同,说明这个比值只与导体自

身的性质有关。这个比值反映了导体的属性。

师生互动,得出电阻的概念:电压和电流的比值R=

叫做导体的电阻。

教师:将上式变形得:I=U,反映了导体对电流的阻碍作用,IU R

上式表明:I是U和R的函数,即导体中的电流跟导体两端的电压成正比,跟导体的电阻成反比,这就是我们初中学过的欧姆定律。

教师:介绍德国物理学家欧姆和欧姆定律的建立,从而对学生进行思想品德教育。 讨论:根据欧姆定律I=UU得R=,有人说导体的电阻R跟加在导体两端的电压U成RI

正比,跟导体中的电流I成反比,这种说法对吗?为什么?

学生:这种说法不对,因为电阻是导体本身的一种特性,所以导体的电阻与导体两端的电压及导体中的电流没有关系。

教师:电阻的单位有哪些?

学生:在国际单位制中,电阻的单位是欧姆,简称欧,符号是 Ω。

常用的电阻单位还有千欧(kΩ)和兆欧(MΩ):1 kΩ=103 Ω 1 MΩ=106 Ω 教师:1 Ω的物理意义是什么?

学生:如果在某段导体的两端加上1 V的电压,通过导体的电流是1 A,这段导体的电阻就是1 Ω。所以1 Ω=1 V/A

教师:要注意欧姆定律的适用条件:纯电阻电路,如金属导体和电解液。对于含有电动机等的非纯电阻电路不适用。

[投影]例题

例:某电阻两端电压为16 V,在30 s内通过电阻横截面的电量为48 C,此电阻为多大?30 s内有多少个电子通过它的横截面?

解析:由题意知U=16 V,t=30 s,q=48 C,

电阻中的电流I=

n=UUq=1.6 A 据欧姆定律I=得,R==10 Ω tRIq=3.0×1020个 e

故此电阻为10Ω,30 s内有3.0×1020个电子通过它的横截面。

[说明]使用欧姆定律计算时,要注意I、U、R的同一性(对同一个导体)。

2、导体的伏安特性

教师:用纵轴表示电流I,用横轴表示电压U,画出的I—U图线叫做导体的伏安特性曲线。如图所示,是金属导体的伏安特性曲线。

学生讨论:在I—U曲线中,

图线的斜率表示的物理意义是什

么?

总结:在I—U图中,图线的斜率表示导体电阻的倒数。即k=I1。图线的斜率越UR

大,电阻越小。

教师:伏安特性曲线是过坐标原点的直线,这样的元件叫线性元件。

师生活动:用晶体二极管、电压表、电流表、滑动变阻器、电键连成如左下图所示的电路,改变电压和电流,画出晶体二极管的伏安特性曲线,右下图所示,可以看出图线不是直线。

教师:伏安特性曲线不是直线,这样的元件叫非线性元件。

(三)课堂总结、点评

(四)实例探究

☆欧姆定律的应用

【例1】两电阻R1、R2的伏安特性曲线如右图所示,由图可知:

(1)这两电阻的大小之比R1∶R2为___A____

A.1∶3 B.3∶1 C.1∶ D.∶1

(2)当这两个电阻上分别加上相同电压时,通过的电流之比为__B_____

A.1∶3 B.3∶1 C.1∶ D.∶1

【例2】若加在某导体两端的电压变为原来的3/5时,导体中的电流减小了0.4 A.如果所加电压变为原来的2倍,则导体中的电流多大?

解析:对欧姆定律理解的角度不同,求解的方法也不相同.本题可以有三种解法: 解答一:依题意和欧姆定律得:RU0/I03U0/5,所以I0=1.0 A I00.4

又因为R

解答二: 由RU02U0,所以I22I02.0 A I0I2U0U12U0/5 得I01.0 A I0I10.4

U0U2,所以I2I0,I22I02.0 A I0I2又R

解答三:画出导体的I—U图像,如图所示,设原来导体两端的电压为U0时,导体中的电流强度为I0

.

当U3U0时,I=I0-0.4 A 5

当U′=2U0时,电流为I2. 由图知I00.4I0I0.42 3U022U0U0U055

所以I0=1.0 A I2=2I0=2.0 A

说明:(1)用I—U图像结合比例式解题,显得更直观、简捷。物理意义更鲜明。

(2)导体的电阻是导体自身的一种属性,与U、I无关,因而RUU,用此式II

讨论问题更简单明了。

作业:书面完成P48“问题与练习”第2、34、题;思考并回答第1、5题。

2.4串联电路和并联电路

教学目标:

(一)知识与技能

1、了解串联和并联电路的连接方式,掌握串并联电路的电流和电压特点。

2、掌握电组的串并联的计算。

3、知道常用的电压表和电流表都是由小量程的电流表G(表头)改装而成的。

4、了解电流表(表头)的原理,知道什么是满偏电流和满偏电压。

5、理解表头改装成常用电压表和电流表的原理,会求分压电阻和分流电阻的阻值。

(二)过程与方法

知道常用的电压表和电流表都是由小量程的电流表改装而成的。通过分压电阻和分流电阻阻值的计算,培养学生应用所学物理知识解决实际问题的能力。

(三)情感、态度与价值观

通过本节课的教学活动,要培养学生的应用意识,引导学生关心实际问题,有志于把所学物理知识应用到实际中去。

教学重点:熟练掌握串并联电路的特点;电组的串并联的计算。

教学难点:表头G改装成大量程电压表V和电流表A的原理,并会计算分压电阻和分流电阻。

教学方法:讲授、讨论、练习

教学手段:投影片、多媒体辅助教学设备

教学活动

(一)引入新课

教师:在初中我们已经学过有关串联和并联的知识,这节课我们要深入研究串并联电路中各部分的电流、电压及电阻的关系。

(二)进行新课

1、串联电路和并联电路的电流

教师:(投影)教材图2.4-1和图2.4-2(如图所示)

引导学生推导出串联电路和并联电路的电流规律。

学生阅读教材,进行推导:

(1)在恒定电流的电路中各出电荷的分布是稳定的,

因此,在相等时间内,通过串联电路各部分的电荷量必须相

等,故有串联电路各处的电流相等。即 I0I1I2I3

(2)在并联电路中,要保持电路各处电荷量分布稳定不变,相同时间内流过干路0点的电荷量必须等于各支路1、2、3各点的电荷量之和。因此,串联电路的总电流等于各支路电流之和。即 I0I1I2I3

2、串联电路和并联电路的电压

教师: 在图2.4-1中,用0、2、3各点的电势,用U01、1、2、3分别表示电路中1、

U12、U23、U03分别表示0与1、1与2、2与3、0与3

的电势差。引导学生推导出串联

电路和并联电路的电压规律。

学生阅读教材,进行推导:

(1)串联电路两端的总电压等于各部分电路电压之和。即 U01+U12+U23=U03

(2)并联电路的总电压与各支路电压相等。用U1、U2、U3代表图2.4-2中三个电阻两端的电压,即有 U1=U2=U3=U

3、电阻的串联和并联

教师活动:(投影)教材图2.4-3和图2.4-4(如图所示)

引导学生推导出串联电路和并联电路的电阻规律。

学生阅读教材,进行推导:

(1)串联电路的总电阻等于各部分电路电阻之和。即

RR1R2

对于多个电阻的串联 RR1R2

(2)并联电路的总电阻的倒数等于各支路电阻的倒数之和。即 111 RR1R2对于多个电阻的串联 111 RR1R2

思考与讨论:(1)n个相同的电阻R0并联,总电阻等于多少?

(2)若干不同的电阻并联,总电阻与其中最小的电阻的大小关系如何?

4、电压表和电流表

学生:利用表头能够测量的最大电流和最大电压分别是多大?

教师:常用的电压表和电流表都是由小量程的电流表G(表头)改装而成的。

(投影)利用多媒体介绍表头的满偏电流Ig、内阻Rg和满偏电压Ug。

(1)满偏电流Ig

表头的线圈准许通过的最大电流很小,一般不超过几十微安到几毫安,这个电流值叫表头的满偏电流,用Ig表示。

满偏电流Ig:表头指针偏转到最大刻度时的电流。

[说明]如果通过表头的电流超过满偏电流Ig,不但指针指不出示数,表头还可能被烧坏。

(2)表头的内阻Rg

表头的线圈电阻一般为几欧到几百欧,这个电阻值叫做表头的内阻,用Rg表示。 内阻Rg:表头线圈的电阻叫做表头的内阻。

[说明]每个表头都有它的满偏电流Ig和内阻Rg,Rg和Ig是表头的两个重要参数。

教师:同学们能不能根据Ig、Rg概括出什么叫做满偏电压?

学生:表头通过满偏电流时,加在它两端的电压,这个电压值叫满偏电压,用Ug表示。 教师:满偏电流Ig、内阻Rg、满偏电压Ug三者之间有什么关系?

学生:据部分电路欧姆定律可知:Ug=IgRg

小结:表头G的满偏电压Ug和满偏电流Ig一般都比较小,测量较大的电压和较大的电流时,需要把小量程的表头G加以改装。

(投影)例1 电流表改装成电压表

(投影)例2 电流表改装成大量程电流表

(三)课堂总结、点评

(四)实例探究

☆表头(G)改装成双量程电流表

【例1】如图所示,有一个表头G,满偏电流Ig=500 mA,内阻Rg=200 Ω,用它改装为有1 A和10 A两种量程的电流表,求R1、R2的阻值各为多大?

解析:当公共端与1 A端接入电路时,量程为I1=1 A,当公共端

与10 A端接入电路时,量程为I2=10 A。

当公共端与1 A端接入被测电路时,电阻R1和R2串联,再与表

头内阻Rg并联。由并联电路中的电流分配关系可得:R1+R2=Ig

I1IgRg

代入Ig、I、Rg的数值得R1+R2=200 Ω ①

当公共端与10 A端接入被测电路时,电阻R1与表头支路的电阻Rg+R2并联。由并联电路的特点可知:

Ig(Rg+R2)=(I2-Ig)R1

代入Ig、I2、Rg的数值,可得

R2+200 Ω=19 R1 ②

由①②解得 R1=20 Ω, R2=180 Ω

[说明]对于I1=1 A的量程,G是它的表头,对于I2=10 A的量程,G与R2串联后相当于它的表头.

☆表头(G)改装成双量程电压表

【例2】如图所示,有一个表头G,满偏电流为Ig=1 mA,内阻Rg= 100 Ω,用它改装为有5 V和50 V两种量程的电压表,求R1、R2的阻值各为多大?

答案:R1=4.9 kΩ,R2=49.9 kΩ

解析:当公共端与5 V端接入被测电路时,量程为U1=5 V

当公共端与50 V端接入被测电路时,量程为U2=50 V.

由串联电路的电压分配关系可知:

R1=U15Rg(100)Ω=4900 Ω=4.9 kΩ Ig1103

U250Rg(100)=49900 Ω=49.9 kΩ 3Ig110R2=

2.5焦耳定律

教学目标:

(一)知识与技能

1、理解电功的概念,知道电功是指电场力对自由电荷所做的功,理解电功的公式,能进行有关的计算。

2、理解电功率的概念和公式,能进行有关的计算。

3、知道电功率和热功率的区别和联系。

(二)过程与方法:通过推导电功计算公式和焦耳定律,培养学生的分析、推理能力。

(三)情感、态度与价值观:通过电能与其他形式能量的转化和守恒,进一步渗透辩证唯物主义观点的教育。

重点:电功、电功率的概念、公式;焦耳定律、电热功率的概念、公式。 难点:电功率和热功率的区别和联系。

教学方法:等效法、类比法、比较法、实验法

教学手段:灯泡(36 V,18 W)、电压表、电流表、电源、滑动变阻器、电键、导线若干、投影仪、投影片、玩具小电机

教学过程:

(一)引入新课

教师:用电器通电后,可以将电能转化成其他形式的能量,请同学们列举生活中常用的用电器,并说明其能量的转化情况。

学生:(1)电灯把电能转化成内能和光能;

(2)电炉把电能转化成内能;

(3)电动机把电能转化成机械能;

(4)电解槽把电能转化成化学能。

教师:用电器把电能转化成其他形式能的过程,就是电流做功的过程。电流做功的多少及电流做功的快慢与哪些因素有关呢?本节课我们学习关于电功和电功率的知识。

(二)进行新课

1、电功和电功率

教师:请同学们思考下列问题

(1)电场力的功的定义式是什么?

(2)电流的定义式是什么?

学生:(1)电场力的功的定义式W=qU

(2)电流的定义式I=q t

教师:投影教材图2.5-1(如图所示)

如图所示,一段电路两端的电压为U,由于这段电路两端有电势差,电路中就有电场存在,电路中的自由电荷在电场力的作用下发生定向移动,形成电流I,在时间t内通过这段电路上任一横截面的电荷量q是多少?

学生:在时间t内,通过这段电路上任一横截面的电荷量q=It。

教师:这相当于在时间t内将这些电荷q由这段电路的一端移到另一端。在这个过程中,电场力做了多少功?

学生:在这一过程中,电场力做的功W=qU=IUt

教师:在这段电路中电场力所做的功,也就是通常所说的电流所做的功,简称电功。 电功:

(1)定义:在一段电路中电场力所做的功,就是电流所做的功,简称电功.

(2)定义式:W=UIT

教师:电功的定义式用语言如何表述?

学生:电流在一段电路上所做的功等于这段电路两端的电压U,电路中的电流I和通电时间t三者的乘积。

教师:请同学们说出电功的单位有哪些?

学生:(1)在国际单位制中,电功的单位是焦耳,简称焦,符号是J.

(2)电功的常用单位有:千瓦时,俗称“度”,符号是kW·h.

教师:1 kW·h的物理意义是什么?1 kW·h等于多少焦?

学生:1 kW·h表示功率为1 kW的用电器正常工作1 h所消耗的电能。

1 kW·h=1000 W×3600 s=3.6×106 J

说明:使用电功的定义式计算时,要注意电压U的单位用V,电流I的单位用A,通电时间t的单位用s,求出的电功W的单位就是J。

教师:在相同的时间里,电流通过不同用电器所做的功一般不同。例如,在相同时间里,电流通过电力机车的电动机所做的功要显著大于通过电风扇的电动机所做的功。电流做功不仅有多少,而且还有快慢,为了描述电流做功的快慢,引入电功率的概念。

(1)定义:单位时间内电流所做的功叫做电功率。用P表示电功率。

(2)定义式:P=W=IU t

(3)单位:瓦(W)、千瓦(kW)

[说明]电流做功的“快慢”与电流做功的“多少”不同。电流做功快,但做功不一定多;电流做功慢,但做功不一定少。

教师:在力学中我们讲功率时有平均功率和瞬时功率之分,电功率有无平均功率和瞬时功率之分呢?

学生分组讨论。

师生共同总结:

(1)利用P=W计算出的功率是时间t内的平均功率。 t

(2)利用P=IU计算时,若U是某一时刻的电压,I是这一时刻的电流,则P=IU就是该时刻的瞬时功率。

教师:为什么课本没提这一点呢?

学生讨论,教师启发、引导:

这一章我们研究的是恒定电流,用电器的构造一定,通过的电流为恒定电流,则用电器两端的电压必是定值,所以U和I的乘积P不随时间变化,也就是说瞬时功率与平均功率总是相等的,故没有必要分什么平均功率和瞬时功率了。

[说明]利用电功率的公式P=IU计算时,电压U的单位用V,电流I的单位用A,电功率P的单位就是W。

2、焦耳定律

教师:电流做功,消耗的是电能。电能转化为什么形式的能与电路中的电学元件有关。在纯电阻元件中电能完全转化成内能,于是导体发热。 .......

设在一段电路中只有纯电阻元件,其电阻为R,通过的电流为I,试计算在时间t内电流通过此电阻产生的热量Q。

学生:求解产生的热量Q。

解:据欧姆定律加在电阻元件两端的电压U=IR

在时间t内电场力对电阻元件所做的功为W=IUt=I2Rt

由于电路中只有纯电阻元件,故电流所做的功W等于电热Q。

产生的热量为

Q=I2Rt

教师指出:这个关系最初是物理学家焦耳用实验得到的,叫焦耳定律,同学们在初中已经学过了。

学生活动:总结热功率的定义、定义式及单位。

热功率:

(1)定义:单位时间内发热的功率叫做热功率。

(2)定义式:P热=Q2=IR t

(3)单位:瓦(W)

[演示实验]研究电功率与热功率的区别和联系。

(投影)实验电路图和实验内容:

取一个玩具小电机,其内阻R=1.0 Ω,把它接在如图所示的

电路中。

(1)先夹住电动机轴,闭合电键,电机不转。调整滑动变阻

器的阻值,使电压表的示数为0.50 V,记下电流表的示数,算出

小电机消耗的电功率和热功率,并加以比较。

(2)再松开夹子,使小电机转动,调整滑动变阻器的阻值,使电压表的示数为2.0 V(此电压为小电机的额定电压),记下电流表的示数,算出小电机消耗的电功率和热功率,并加以比较。

[实验结果]

(1)电机不转时,U=0.50 V,I=0.50 A,

P电=UI=0.50×0.50 W=0.25 W

P热=I2R=0.502×1.0 W=0.25 W

P电=P热

(2)电机转动时,U=2.0 V,I=0.40 A,

P电=UI=2.0×0.40 W=0.80 W

P热=I2R=0.402×1.0 W=0.16 W

P电>P热

学生:分组讨论上述实验结果,总结电功率与热功率的区别和联系。

师生共同活动:总结:

(1)电功率与热功率的区别

电功率是指输入某段电路的全部功率或在这段电路上消耗的全部电功率,决定于这段电路两端电压U和通过的电流I的乘积。

热功率是在某段电路上因发热而消耗的功率,决定于通过这段电路的电流的平方I2和电阻R的乘积。

(2)电功率与热功率的联系

若在电路中只有电阻元件时,电功率与热功率数值相等。即P热=P电

教师指出:上述实验中,电机不转时,小电机就相当于纯电阻。

若电路中有电动机或电解槽时,电路消耗的电功率绝大部分转化为机械能或化学能,

有一少部分转化为内能,这时电功率大于热功率,即P电>P热。

教师指出:上述实验中,电机转动时,电机消耗的电功率,其中有一部分转化为机械能,有一部分转化为内能,故P电>P热。

例题:教材56页

教师引导学生完成对例题的分析、求解。

(三)课堂总结、点评

(四)实例探究

☆求两点间的电势差

【例1】不考虑温度对电阻的影响,对一个“220V,40W”的灯泡,下列说法正确的是( BD )

A.接在110 V的电路上时的功率为20 W B.接在110 V的电路上时的功率为10 W

C.接在440 V的电路上时的功率为160W D.接在220 V的电路上时的功率为40 W 说明:灯泡是我们常用的用电器,解题时一般不考虑温度对其电阻的影响。用电器的标称值,指其额定值,即用电器在正常工作时的电压、功率以及电流值,由P额=U额·I额可知,P、U、I有同时达到、同时超过、同时不满足的特点。

【例2】一直流电动机线圈内阻一定,用手握住转轴使其不能转动,在线圈两端加电压为0.3V,电流为0.3A。松开转轴,在线圈两端加电压为2 V时,电流为0.8 A,电动机正常工作。求该电动机正常工作时,输入的电功率是多少?电动机的机械功率是多少?

解析:电动机不转动时,其消耗的电功全部转化为内能,故可视为纯电阻电路,由欧姆定律得电动机线圈内阻:rU0.31 I0.3

电动机转动时,消耗的电能转化为内能和机械能,其输入的电功率为

P入=I1U1=0.8×2W=1.6 W

电动机的机械功率

P机=P入-I12r=1.6-0.82×1 W=0.96W

说明:在非纯电阻电路里,要注意区别电功和电热,注意应用能量守恒定律。①电热Q=I2Rt。②电动机消耗的电能也就是电流的功W=Iut。③由能量守恒得W=Q+E,E为其他形式的能,这里是机械能;④对电动机来说,输入的功率P入=IU;发热的功率P热=I2R;输出的功率,即机械功率P机=P入-P热=UI-I2R。

【例3】如图所示,有一提升重物用的直流电动机,内阻r=0.6Ω,R=10Ω,U=160 V,电压表的读数为110 V,求

(1)通过电动机的电流是多少?

(2)输入到电动机的电功率是多少?

(3)在电动机中发热的功率是多少?

(4)电动机工作1 h所产生的热量是多少?

解析:(1)设电动机两端的电压为U1,电阻R两端的电压为U2,则

U1=110 V,U2=U-U1=(160-110)V=50 V

通过电动机的电流为I,则I=U250= A=5 A R10

(2)输入到电功机的电功率P电,P电=U1I=110×5 W=550 W

(3)在电动机中发热的功率P热,P热=I2r=52×0.6 W=15 W

(4)电动机工作1 h所产生的热量Q,Q=I2rt=52×0.6×3600 J=54000 J

说明:电动机是非线性元件,欧姆定律对电动机不适用了,所以计算通过电动机的电流

时,不能用电动机两端的电压除以电动机的内阻。

通过计算发现,电动机消耗的电功率远大于电动机的热功率。

2.6电阻定律

教学目标:

(一)知识与技能

1、理解电阻定律和电阻率,能利用电阻定律进行有关的分析和计算。 2、了解电阻率与温度的关系。

(二)过程与方法:用控制变量法,探究导体电阻的决定因素,培养学生利用实验抽象概括出物理规律的能力。

(三)情感、态度与价值观:通过实验探究,体会学习的快乐。 重点:电阻定律及利用电阻定律分析、解决有关的实际问题。 难点:利用实验,抽象概括出电阻定律是本节课教学的难点。 教学方法:探究、讲授、讨论、练习

教学手段:实物投影仪、电流表、电压表、滑动变阻器、学生电源、电键、导线若干、实验所需合金导线、日光灯灯丝、欧姆表、酒精灯、热敏电阻、光敏电阻、手电筒

教学活动

(一)引入新课

教师:同学们在初中学过,电阻是导体本身的一种性质,导体电阻的大小决定于哪些因素?其定性关系是什么?

学生:导体电阻的大小决定于导体的长度、横截面积和材料。同种材料制成的导体,长度越长,横截面积越小,电阻越大。

教师:同学们在初中已经知道了导体的电阻与材料、长度、横截面积的定性关系,这节课让我们用实验定量地研究这个问题。

(二)进行新课 1、电阻定律 教师:(多媒体展示)介绍固定在胶木板上的四根合金导线L1、L2、L3、L4的特点. (1)L1、L2为横截面积相同、材料相同而长度不同的合金导线(镍铬丝) (2)L2、L3为长度相同,材料相同但横截面积不同的合金导线(镍铬丝)

(3)L3、L4为长度相同、横截面积相同但材料不同的合金导线(L3为镍铬丝,L4为康铜丝)

演示实验:按下图连接成电路。

(1)研究导体电阻与导体长度的关系

教师:将与A、B连接的导线分别接在L1、L2两端,调节变阻器R,保持导线两端的电压相同,并测出电流.比较通过L1、L2电流的不同,得出导线电阻与导线长度的关系。

学生:从实验知道,电流与导线的长度成反比,表明导线的电阻与导线的长度成正比。

(2)研究导体电阻与导体横截面积的关系

教师:将与A、B连接的导线分别接在L2、L3两端,调节变阻器R,保持导线两端的电压相同,并测出电流.比较通过L2、L3电流的不同,得出导线电阻与导体横截面积的关系。

学生:从实验知道,电流与导线的横截面积成正比,表明导线的电阻与导线的横截面积成反比。

(3)研究导体的电阻与导体材料的关系

教师:将与A、B连接的导线分别接在L3、L4两端,重做以上实验。

学生:从实验知道,电流与导体的材料有关,表明导线的电阻与材料的性质有关。 师生共同活动:小结实验结论,得出电阻定律。 电阻定律: (1)内容:同种材料的导体的电阻R跟它的长度L成正比,跟它的横截面积S成反比;导体电组与构成它的材料有关。这就是电阻定律。

(2)公式:R=ρ

L S

教师指出:式中ρ是比例常数,它与导体的材料有关,是一个反映材料导电性能的物理量,称为材料的电阻率。

电阻率ρ:

(1)电阻率是反映材料导电性能的物理量。 (2)单位:欧·米(Ω·m)

镍铜合金:54%铜,46%镍。.

镍铬合金:67.5%镍,15%铬,16%铁,1.5%锰。 学生思考:

(1)金属与合金哪种材料的电阻率大?

(2)制造输电电缆和线绕电阻时,怎样选择材料的电阻率? [参考解答]

(1)从表中可以看出,合金的电阻率大。

(2)制造输电电缆时应选用电阻率小的铝或铜来做.制造线绕电阻时应选用电阻率大的合金来制作。

2、电阻率与温度的关系

演示实验:将日光灯灯丝(额定功率为8 W)与演示用欧姆表调零后连接成下图电路,观察用酒精灯加热灯丝前后,欧姆表示数的变化情况。

学生总结:当温度升高时,欧姆表的示数变大,表明金属灯丝的电阻增大,从而可以得出:金属的电阻率随着温度的升高而增大。

教师:介绍电阻温度计的主要构造、工作原理。如图2.6-5所示。

学生思考:锰铜合金和镍铜合金的电阻率随温度变化极小,怎样利用它们的这种性质?

参考解答:利用它们的这种性质,常用来制作标准电阻。 (三)课堂总结、点评

通过本节课的学习,主要学习了以下几个问题:

1、电阻定律R=ρ

L S

2、电阻率是反映材料导电性能的物理量.材料的电阻率随温度的变化而改变;某些材料的电阻率会随温度的升高而变大(如金属材料);某些材料的电阻率会随温度的升高而减小(如半导体材料、绝缘体等);而某些材料的电阻率随温度变化极小(如康铜合金材料)

(四)实例探究 ☆电阻定律的应用

【例1】一段均匀导线对折两次后并联在一起,测得其电阻为0.5 Ω,导线原来的电阻多大?若把这根导线的一半均匀拉长为三倍,另一半不变,其电阻是原来的多少倍?

答案:8 Ω;5倍 ☆综合应用

【例2】在相距40 km的A、B两地架两条输电线,电阻共为800 Ω,如果在A、B间的某处发生短路,这时接在A处的电压表示数为10 V,电流表的示数为40 mA,求发生短路处距A处有多远?如下图所示.

解析:设发生短路处距离A处有x米,据题意知,A、B两地间的距离l=40 km,电压表的示数U=10 V,电流表的示数I=40 mA=40×10-3A,R总=800Ω。

根据欧姆定律I=Rx=

U

可得:A端到短路处的两根输电线的电阻Rx R

③ 由②/③得

U10

Ω=250Ω 

I40103

2x

根据电阻定律可知:Rx=ρ

S

A、B两地输电线的电阻为R总,R总=ρ

2l S

Rxx

 R总l

解得x=

Rx250l×40 km=12.5 km

R总800

2.7 闭合电路欧姆定律

教学目标:

(一)知识与技能

1、能够推导出闭合电路欧姆定律及其公式,知道电源的电动势等于内、外电路上电势降落之和。

2、理解路端电压与负载的关系,知道这种关系的公式表达和图线表达,并能用来分析、计算有关问题。

3、掌握电源断路和短路两种特殊情况下的特点。知道电源的电动势等于电源没有接入电路时两极间的电压。

4、熟练应用闭合电路欧姆定律解决有关的电路问题。

5、理解闭合电路的功率表达式,知道闭合电路中能量的转化。

(二)过程与方法

1、通过演示路端电压与负载的关系实验,培养学生利用“实验研究,得出结论”的探究物理规律的科学思路和方法。

2、通过利用闭合电路欧姆定律解决一些简单的实际问题,培养学生运用物理知识解决实际问题的能力。

(三)情感、态度与价值观:通过本节课教学,加强对学生科学素质的培养,通过探究物理规律培养学生的创新精神和实践能力。

重点:1、推导闭合电路欧姆定律,应用定律进行有关讨论。

2、路端电压与负载的关系

★教学难点:路端电压与负载的关系 教学方法:演示实验,讨论、讲解

教学手段:滑动变阻器、电压表、电流表、电键、导线若干、投影仪、多媒体电脑

教学活动

(一)引入新课

教师:前边我们知道电源是通过非静电力做功把其他形式能转化为电能的装置。只有用导线将电源、用电器连成闭合电路,电路中才有电流。那么电路中的电流大小与哪些因素有关?电源提供的电能是如何在闭合电路中分配的呢?今天我们就学习这方面的知识。

(二)进行新课

1、闭合电路欧姆定律 教师:(投影)教材图2.7-1(如图所示) 教师:闭合电路是由哪几部分组成的? 学生:内电路和外电路。

教师:在外电路中,沿电流方向,电势如何变化?为什么? 学生:沿电流方向电势降低。因为正电荷的移动方向就是电流方向,在外电路中,正电荷受静电力作用,从高电势向低电势运动。

教师:在内电路中,沿电流方向,电势如何变化?为什么? 学生(代表):沿电流方向电势升高。因为电源内部,非静电力将正电荷从电势低处移到电势高处。

教师:这个同学说得确切吗?

学生讨论:如果电源是一节干电池,在电源的正负极附近存在着化学反应层,反应层中

非静电力(化学作用)把正电荷从电势低处移到电势高处,在这两个反应层中,沿电流方向

电势升高。在正负极之间,电源的内阻中也有电流,沿电流方向电势降低。

教师:(投影)教材图2.7-2(如图所示)内、外电路的电势变化。 教师:引导学生推导闭合电路的欧姆定律。可按以下思路进行:设电源电动势为E,内阻为r,外电路电阻为R,闭合电路的电流为I,

(1)写出在t时间内,外电路中消耗的电能E外的表达式; (2)写出在t时间内,内电路中消耗的电能E内的表达式; (3)写出在t时间内,电源中非静电力做的功W的表达式;

学生:(1)E外=I2Rt

(2)E内=I2rt (3)W=Eq=EIt

根据能量守恒定律,W= E外+E内 即 EIt =I2Rt+ I2rt

整理得:E =IR+ Ir 或者I

E

Rr

教师(帮助总结):这就是闭合电路的欧姆定律。

(1)内容:闭合电路中的电流跟电源的电动势成正比,跟内、外电路的电阻之和成反比,这个结论叫做闭合电路的欧姆定律。

(2)公式:I=

E

Rr

(3)适用条件:外电路是纯电阻的电路。

根据欧姆定律,外电路两端的电势降落为U外=IR,习惯上成为路端电压,内电路的电势降落为U内=Ir,代入E =IR+ Ir

得 EU外U内

该式表明,电动势等于内外电路电势降落之和。 2、路端电压与负载的关系

教师:对给定的电源,E、r均为定值,外电阻变化时,电路中的电流如何变化? 学生:据I=

E

可知,R增大时I减小;R减小时I增大。 Rr

教师:外电阻增大时,路端电压如何变化? 学生:有人说变大,有人说变小。

教师:实践是检验真理的惟一标准,让我们一起来做下面的实验。 演示实验:探讨路端电压随外电阻变化的规律。 (1)投影实验电路图如图所示。

(2)按电路图连接电路。

(3)调节滑动变阻器,改变外电路的电阻,观察路端电压怎样随电流(或外电阻)而改变。

学生:总结实验结论:

当外电阻增大时,电流减小,路端电压增大;当外电阻减小时,电流增大,路端电压减小。

教师:下面用前面学过的知识讨论它们之间的关系。路端电压与电流的关系式是什么? 学生:U=E-Ir

教师:就某个电源来说,电动势E和内阻r是一定的。当R增大时,由II减小,由U=E-Ir,路端电压增大。反之,当R减小时,由I

E

得,Rr

E

得,I增大,由U=E-Ir,Rr

路端电压减小。

拓展:讨论两种特殊情况:

教师:刚才我们讨论了路端电压跟外电阻的关系,请同学们思考:在闭合电路中,当外电阻等于零时,会发生什么现象?

学生:发生短路现象。

教师:发生上述现象时,电流有多大?

学生:当发生短路时,外电阻R=0,U外=0,U内=E=Ir,故短路电流I=

E。 r

教师:一般情况下,电源内阻很小,像铅蓄电池的内阻只有0.005 Ω~0.1 Ω,干电池的内阻通常也不到1 Ω,所以短路时电流很大,很大的电流会造成什么后果?

学生:可能烧坏电源,甚至引起火灾。

教师:实际中,要防止短路现象的发生。当外电阻很大时,又会发生什么现象呢? 学生:断路。断路时,外电阻R→∝,电流I=0,U内=0,U外=E。 教师:电压表测电动势就是利用了这一原理。 3、闭合电路欧姆定律的应用 师生共同分析课本例题1.

讨论:电源的U—I图象

教师:根据U=E-Ir,利用数学知识可以知道路端电压U是电流I的一次函数,同学们能否作出U—I图象呢?

学生:路端电压U与电流I的关系图象是一条向下倾斜的直线。

投影:U—I图象如图所示。 教师:从图象可以看出路端电压与电流的关系是什么? 学生:U随着I的增大而减小.

教师:直线与纵轴的交点表示的物理意义是什么?直线的斜率呢?

学生:直线与纵轴的交点表示电源的电动势E,直线的斜率的绝对值表示电源的内阻。 (三)课堂总结、点评

通过本节课的学习,主要学习了以下几个问题: 1、电源的电动势等于电源没有接入电路时两极间的电压。电源电动势等于闭合电路内、外电阻上的电势降落U内和U外之和,即E=U内+U外。

2、闭合电路的欧姆定律的内容及公式。

3、路端电压随着外电阻的增大而增大,随着外电阻的减小而减小。

4、路端电压与电流的关系式为U=E-Ir,其U—I图线是一条倾斜的直线。 (四)实例探究

☆电路结构变化问题的讨论

【例1】在如图所示的电路中,R1=10 Ω,R2=20 Ω,滑动变阻器R的阻值为0~50 Ω,当滑动触头P由I向b滑动的过程中,灯泡L的亮度变化情况是__B_____

A.逐渐变亮 B.逐渐变暗

C.先变亮后变暗 D.先变暗后变亮

☆闭合电路欧姆定律的定量应用

【例2】 如图所示电路中,R1=0.8Ω,R3=6Ω,滑动变阻器的全值电阻R2=12 Ω,电源电动势E=6 V,内阻r=0.2 Ω,当滑动变阻器的滑片在变阻器中央位置时,闭合开关S,电路中的电流表和电压表的读数各是多少?

R2

R66Ω+0.8Ω解析:外电路的总电阻为R=1R266R3

2

R3

=3.8Ω

根据闭合电路欧姆定律可知,电路中的总电流为

I=

E6

A=1.5 A 

Rr3.80.2

即电流表A1的读数为1.5 A

对于R2与R3组成的并联电路,根据部分电路欧姆定律,并联部分的电压为

R2

=1.5×3 V=4.5 V U2=I·R并=I·

RR32

2

R3

即电压表V2的读数为4.5 V

对于含有R2的支路,根据部分电路欧姆定律,通过R2的电流为 I2=

U24.5

 A=0.75 A R2/26

即电流表A2的读数为0.75 A

电压表V1测量电源的路端电压,根据E=U外+U内得 U1=E-Ir=6 V-1.5×0.2 V=5.7 V 即电压表V1的读数为5.7 V. 点评:

1.电路中的电流表、电压表均视为理想电表(题中特别指出的除外),即电流表内阻视为零,电压表内阻视为无穷大。

2.解答闭合电路问题的一般步骤:

(1)首先要认清外电路上各元件的串并联关系,必要时,应进行电路变换,画出等效电路图。

(2)解题关键是求总电流I,求总电流的具体方法是:若已知内、外电路上所有电阻的阻值和电源电动势,可用全电路欧姆定律(I=

E

)直接求出I;若内外电路上有多个Rr

电阻值未知,可利用某一部分电路的已知电流和电压求总电流I;当以上两种方法都行不通时,可以应用联立方程求出I。

(3)求出总电流后,再根据串、并联电路的特点或部分电路欧姆定律求各部分电路的电压和电流。

2.8多用电表

教学目标:

(一)知识与技能:理解并掌握欧姆表和多用电表的制作原理。

(二)过程与方法:动手操作,学会用多用电表测量小灯泡的电压、电流、及二极管的正、反向电阻。

(三)情感、态度与价值观:培养学生探索、发现,勇于创新的精神。 重点:欧姆表和多用电表的制作原理。 难点:理解欧姆表和多用电表的制作原理。

教学方法:探究、讲授、讨论、练习

教学手段:投影仪、多用电表(指针式、数字式)、小灯泡、电池、电键、导线(若干)、二极管

教学活动

(一)引入新课 教师:我们已经学习过把电流表改装成电压表和量程较大的电流表的原理,下面请同学们画出改装的原理图。

学生:在练习本上画出改装的原理图。学生代表到黑板上画。 师生互动:对学生画的改装原理图进行点评。

教师:能否将电流表改装成测量电阻的欧姆表呢?下面我们就来探究这方面的问题。 (二)进行新课 1、欧姆表

教师活动: 带领学生看课本例题1.

教师引导学生分析、求解,对求解结果进行总结、点评。

教师:通过以上计算同学们有何启发?如何将电流表转换成直接测量电阻的仪表?谈谈你的设想。

学生讨论,代表发言:将电流表的“10mA”刻度线标为“0Ω”,“5mA”刻度线标为“150Ω”,其它电流刻度按R

1.5

150()的规律转为电阻的标度,I

这样,电流表就改装成了直接测电阻的仪器。

教师(总结):(投影)教材图2.8-2(如图所示)。这就是一个最简单的欧姆表的电路原理图。实际的欧姆表就是在这个原理的基础上制成的。

2、多用电表

教师:将电压表、电流表、欧姆表组合在一起就成了多用电表。

(投影)教材图2.8-3和2.8-4(如图所示)。

图2.8-3分别表示电流表、欧姆表、电压表的电路示意图。把它们组合在一起,在图2.8-4的基础上画出最简单得多用电表的电路,并说明转换测量功能。

学生讨论,画电路图。 教师:(投影)教材图2.8-5(如图所示)。

说出那些位置是电流挡、那些位置是电压挡、那些位置是欧姆挡?哪些位置的量程比较大?

学生讨论、代表发言。 师生互动、点评。 教师:教师:(投影)教材图2.8-6和2.8-7(如图所示)。向学生介绍指针式多用电表和数字式多用电表的外形和各部分结构。

[实验] 练习使用多用电表 准备

(1)观察多用电表的外形,认识选择开关的测量项目及量程;

(2)检查多用电表的指针是否停在表盘刻度左端的零位置。若不指零,则可用小螺丝刀调整机械调零旋钮使指针指零;

(3)将红、黑表笔分别插入“+”、“-”插孔; 测电压

(4)将选择开关置于直流电压2.5V挡,测1.5V干电池的电压;

(5)将选择开关置于交流电压250V挡,测220V的交流电压;

测电流

(6)将选择开关置于直流电流10mA挡,测量1.5V干电池与200Ω电阻串联回路的电流;

测电阻

(7)将选择开关置于欧姆表的“×1”挡,短接红、黑表笔,转动调整欧姆零点的旋钮,使指针指向欧姆表刻度的零位置。

(8)将两表笔分别接触几欧、几十欧的定值电阻两端,读出欧姆表指示的电阻数值,并与标准值比较,然后断开表笔。

(9)将选择开关置于欧姆挡的“100”挡,重新调整欧姆零点,然后测定几百欧、几千欧的电阻,并将测定值与标准值进行比较。

测二极管的正、反向电阻

(10)首先弄清两个问题:

①二极管的单向导电性。如图2.8-10:电流从正极流入电阻较小,从正极流出时电阻较大。

②欧姆表中电流的方向。从黑表笔流出,经过待测电阻,从红表笔流入。

(11)测正向电阻:将选择开关置于欧姆表的“×10”挡,短接红、黑表笔,转动调整欧姆零点的旋钮,使指针指向欧姆表刻度的零位置。黑表笔接二极管正极、红表笔接二极管负极,(如图2.8-11)读出欧姆表指示的电阻数值。乘以倍率,记下正向阻值。

(12)测反向电阻:将选择开关置于欧姆表的“×1000”挡,短接红、黑表笔,转动调整欧姆零点的旋钮,使指针指向欧姆表刻度的零位置。黑表笔接二极管负极、红表笔接二极管正极(如图2.8-12),读出欧姆表指示的电阻数值。乘以倍率,记下反向阻值。

(13)实验完毕,将表笔从插孔中拔出,并将选择开关置于“OFF”挡或交流电压最高挡。

【注意事项】

(1)多用电表在使用前,一定要观察指针是否指向电流的零刻度。若有偏差,应调整机械零点;

(2)合理选择电流、电压挡的量程,使指针尽可能指在表盘中央附近;

(3)测电阻时,待测电阻要与别的元件断开,切不要用手接触表笔;

(4)合理选择欧姆挡的量程,使指针尽可能指在表盘中央附近;

(5)换用欧姆档的量程时,一定要重新调整欧姆零点;

(6)要用欧姆档读数时,注意乘以选择开关所指的倍数;

(7)实验完毕,将表笔从插孔中拔出,并将选择开关置于“OFF”挡或交流电压最高挡。长期不用,应将多用电表中的电池取出。

思考与讨论:(投影)教材图2.8-13。两位同学在多用电表用完后,把选择开关放在图示的位置,你认为谁的习惯比较好?

(三)课堂总结、点评

(四)实例探究

☆欧姆表的使用

【例1】某人用多用电表按正确步骤测量一电阻的阻值,当选择欧姆挡“×1”挡测量时,指针指示位置如下图所示,则其电阻值是__________。如果要用这只多用电表测量一个约200欧的电阻,为了使测量比较精确,选择开关应选的欧姆挡是_________。改变挡位调整倍率后,要特别注意重新____________________。

答案:12Ω,“×10挡”,调整欧姆零点

【例2】调整欧姆零点后,用“×10”挡测量一个电阻的阻值,发现表针偏转角度极小,那么正确的判断和做法是

A.这个电阻值很小

B.这个电阻值很大

C.为了把电阻值测得更准确些,应换用“×1”挡,重新调整欧姆零点后测量。

D.为了把电阻值测得更准确些,应换用“×100”挡,重新调整欧姆零点后测量。 答案:BD

☆欧姆表的测量原理

【例3】如图所示为多用电表欧姆挡的原理示意图。其中,电流表的满偏电流为300μ

A,内阻rg=100Ω,调零电阻最大值R=50kΩ,串联的定值电阻R0=50Ω,电池电动势E=1.5V。用它测量电阻Rx,能准确测量的阻值范围是

A.30~80 kΩ B.3~8 kΩ C. 300~800 Ω D.30~80Ω

解析:用欧姆当测量电阻时,指针指在表盘中央附近时测量结果比较准确。当电流最大时,由

Ig

得 E,其中R内为欧姆表的内阻。 R内

R内E1.55000 6Ig30010

用它测量电阻Rx时,当指针指在表盘中央时

1EIg 2R内Rx

Rx2ER内5000 Ig

故能准确测量的阻值范围是5kΩ附近。选项B正确。

2.9实验:测定电池的电动势和内阻

教学目标:

(一)知识与技能

1、了解并掌握测定电池的电动势和内阻的原理和实验方法。

2、学习用图象法处理实验数据。

(二)过程与方法

通过设计电路和选择仪器,开阔思路,激发兴趣。养成规范操作实验并能科学、合理地处理数据的习惯。

(三)情感、态度与价值观

使学生理解和掌握运用实验手段处理物理问题的基本程序和技能,具备敢于质疑的习惯、严谨求实的态度和不断求索的精神,培养学生观察能力、思维能力和操作能力,提高学生对物理学习的动机和兴趣。

重点:掌握实验原理和方法,学会处理实验数据。

难点:用图象法处理实验数据。

教学方法:分组实验

教学手段:测定电池的电动势和内阻的有关实验器材

教学活动

(一)引入新课

教师:我们已经学习了闭合电路的欧姆定律,请大家写出有关的公式。

学生:回忆并写出闭合电路欧姆定律公式。

教师:这节课我们就根据闭合电路的欧姆定律,来测量电池的电动势和内阻。

(二)进行新课

1、实验原理

提出问题:现在有一个干电池,要想测出其电动势和内

电阻,你需要什么仪器,采用什么样的电路图,原理是什么?

学生讨论后,可以得到多种实验方案。

(1)用电压表、电流表、可变电阻(如滑动变阻器)

测量。如图2.9-1所示:

原理公式:EUIr

(2)用电流表、电阻箱测量。如图2.9-2所示:

原理公式:EIRIr

(3)用电压表、电阻箱测量。如图2.9-3所示: 原理公式:EUUr R

这几种方法均可测量,今天我们这节课选择第一种测量

方案。

2、实验方法

教师:引导学生阅读教材72页有关内容,回答问题。

(1)用水果电池的优点是什么?电源的正负极如何鉴别?其内阻与哪些因素有关?实验过程中会有何变化?实验中要注意什么?

(2)简要写出实验步骤。

学生:阅读教材,解决以上问题。在教师指导下完成实验,要记录至少六组实验数据。

3、数据处理

原则上,利用两组数据便可得到结果,但这样做误差会比较大,为此,我们可以多测几组求平均,也可以将数据描在图上,利用图线解决问

题。

明确:

(1)图线的纵坐标是路端电压,它反映的是:当

电流强度I增大时,路端电压U将随之减小,U与I

成线性关系,U=E-Ir。也就是说它所反映的是电源的

性质,所以也叫电源的外特性曲线。

(2)电阻的伏安特性曲线中,U与I成正比,前

提是R保持一定,而这里的U-I图线中,E、r不变,

外电阻R改变,正是R的变化,才有I和U的变化。

实验中至少得到5组以上实验数据,画在图上拟合出一条直线。要求:使多数点落在直线上,并且分布在直线两侧的数据点的个数要大致相等,这样,可使偶然误差得到部分抵消,从而提高精确度。

讨论:将图线延长,与横纵轴的交点各代表什么情况?

归纳:将图线两侧延长,纵轴截距点意味着断路情况,它的数值就是电源电动势E。横轴截距点(路端电压U=0)意味着短路情况,它的数值就是短路电流E。 r

说明:①两个截距点均是无法用实验实际测到的,是利用得到的图线向两侧合理外推得到的。

②由于r一般很小,得到的图线斜率的绝对值就较小。为了使测量结果准确,可以将纵轴的坐标不从零开始,计算r时选取直线上相距较远的两点求得。

(三)课后小结

这节课我们学习了测定电池的电动势和内阻的原理和实验方法。并学习了用图象法处理实验数据。

2.10简单的逻辑电路

教学目标:

(一)知识与技能

1、知道数字电路和模拟电路的概念,了解数字电路的优点。

2、知道“与”门、“或”门、“非”门电路的特征、逻辑关系及表示法。

3、初步了解“与”门、“或”门、“非”门电路在实际问题中的应用

(二)过程与方法:突出学生自主探究、交流合作为主体的学习方式。

(三)情感、态度与价值观:1、感受数字技术对现代生活的巨大改变;

2、体验物理知识与实践的紧密联系;

重点:三种门电路的逻辑关系。

难点:数字信号和数字电路的意义。

教学方法:探究、讲授、讨论、练习

教学手段:声光控感应灯、投影仪、多媒体教学设备、三种门电路演示示教板、电压表等 教学活动

(一)引入新课

教师简介:身边的“数字”话题:数码产品、数字电视、DIS实验、家电等。 这些电器中都包含了“智能”化逻辑关系,今天我们就来学习简单的逻辑电路。

(二)进行新课

教师介绍:A、数字信号与模拟信号

(1)数字信号在变化中只有两个对立的状态:“有”,或者“没有”。而模拟信号变化则是连续的。

(2)调节收音机的音量,声音连续变化,声音信号是“模拟”量。

(3)图示数字信号和模拟信息:

点评:引导学生了解数字信号和模拟信号的不同特征。

B、数字电路 逻辑电路 门电路

数学信号的0和1好比是事物的“是”与“非”,而处理数字

信号的电路称数字电路,因此,数字电路就有了判别“是”与

“非”的逻辑功能。下面我们将学习数字电路中最基本的逻辑电

路---门电路。

1、“与”门

教师介绍:所谓“门”,就是一种开关,在一定条件下它允许信号通过,如果条件不满足,信号就被阻挡在“门”外。

教师:(投影)教材图2.10-2

引导学生分析开关A、B对电路的控制作用。体会“与”逻

辑关系。

思考与讨论:谈谈生活中哪些事例体现了“与”逻辑关系。

教师指出:具有“与”逻辑关系的电路称为“与”门电路,简称“与”门。 符号:。

(1)“与”逻辑关系的数学表达,寻找“与”

电路的真值表

把开关接通定义为1,断开定义为0,灯泡

亮为1,熄为0,图2.10-2的情况可以用表2的

数学语言来描述。这种表格称为真值表。

投影:

(2)总结“与”逻辑

关系:有两个控制条件

作用会产生一个结果,

当两个条件都满足时,

结果才会成立,这种关

系称为“与”逻辑关系。

点评:让学生理解

数字信号“与”逻辑关

系间的联系,对“与”逻辑关系的仔细分析,理解记住“与”逻辑的真值表。

(3)演示“与”门电路实验,如图2.10-5。

通过示范性的操作演示讲解,理解“与”门电路

实现“与”关系处理的电路原理,为下阶段探究“或”

关系及“或”电路作准备。

(4)声、光控感应灯的再讨论:

2、“或”门

锁门方式的讨论,引入“或”门:家中的门锁能

用“与”的关系吗?

学生讨论:不能用“与”的关系。

教师:(投影)教材图2.10-6

引导学生分析开关A、B对电路的控制作用。体会

“或”逻辑关系。

教师指出:具有“或”逻辑关

系的电路称为“或”门电路,简称

“或”门。

符号:。

(1)“或”逻辑关系的数学表达,寻找“或”电路的真值表

把开关接通定义为1,断开定义为0,灯泡亮为1,熄为0,将表3制成表4。表4就是反映“或”门输入输出关系的真值表。

投影:

(2)总结“或”逻辑关系:在几个控制条件中,只要有一个条件得到满足,结果就会发生。这种关系称为“或”逻辑关系。

点评:让学生理解数字信号“或”逻辑关系间的联系,对“或”逻辑关系的仔细分析,理解记住“或”逻辑的真值表。

(3)演示“或”门电路实验,如图2.10-8。

点评:通过示范性的操作演示讲解,理解“或”

门电路实现“或”关系处理的电路原理,为下阶段探

究“非”关系及“非”电路作准备。

3、“非”门

教师:(投影)教材图2.10-9

引导学生分析开关A对电路的控

制作用。体会“非”逻辑关系。

教师:仍然把开关接通定义为1,

断开定义为0,灯泡亮为1,熄为0,

请同学们自己探究输入与输出间的关

系。说明什么是“非”逻辑。

学生:讨论,得出结论:输出状态和输入状态成相反的逻辑关系,叫做“非”逻辑。 教师指出:具有“非”逻辑关系的电路称为“非”门电路,简称“非”门。 符号:。

教师:请同学们自己画出“非”门

的真值表。如下表。

教师:介绍集成电路的优点。让学

生了解几个“或”门的集成电路和几个

“非”门的集成电路的外引线图。

投影:

演示“非”门电路实验,结果如图2.10-13。

(三)实例探究

投影:

教师引导学生完成对例题的分析和求解,通过实例分析加深对所学知识的理解。

猜你想看
相关文章

Copyright © 2008 - 2022 版权所有 职场范文网

工业和信息化部 备案号:沪ICP备18009755号-3