当前位置:首页 > 申请书大全 > 【自动控制原理胡寿松第四版课后答案】 自控开环闭环
 

【自动控制原理胡寿松第四版课后答案】 自控开环闭环

发布时间:2019-07-20 11:12:40 影响了:

1-3

解:系统的工作原理为:当流出增加时,液位降低,浮球降落,控制器通过移动气动阀门的 开度,流入量增加,液位开始上。当流入量和流出量相等时达到平衡。当流出量减小时,系 统的变化过程则相反。

流出量

希望液位

图一

1-4 (1) (2) (3) (4) (5) (6)

非线性系统 非线性时变系统 线性定常系统 线性定常系统 线性时变系统 线性定常系统

2-1 解:

显然,弹簧力为 kx(t ) ,根据牛顿第二运动定律有:

d 2 x(t )

F (t ) − kx(t) = mdt 2

移项整理,得机械系统的微分方程为:

2 d x(t )

2+ kx(t ) = F (t )

dt

对上述方程中各项求拉氏变换得:

ms 2 X (s) + kX (s) = F (s)

所以,机械系统的传递函数为:

G(s) =

X (s) 1

=

F (s) ms 2 + k

2-2 解一:

由图易得:

i1 (t )R1 = u1 (t ) − u2 (t ) uc (t ) + i1 (t )R2 = u2 (t )

duc (t )

i1 (t ) = Cdt

由上述方程组可得无源网络的运动方程为:

du1 (t ) du2 (t )

+ + C ( R1 + R u ) = CR2 u1 (t ) 2 )2 (t dtdt

对上述方程中各项求拉氏变换得:

C (R1 + R2 )sU 2 (s) + U 2 (s) = CR2 sU1 (s) + U1 (s)

所以,无源网络的传递函数为:

U (s) 1 + sCR2

G(s) = 2 =

U1 (s) 1 2

解二(运算阻抗法或复阻抗法):

1+ R2

U (s ) 1 + R Cs 2 2 1 U 1 + ( R + R 1 (s) R 1 2 )Cs+ R1 2

Cs

2-5 解:按照上述方程的顺序,从输出量开始绘制系统的结构图,其绘制结果如下图所示:

依次消掉上述方程中的中间变量 X 1 , X 2 , X 3 , 可得系统传递函数为:

G1 (s)G2 (s)G3 (s)G4 (s) C(s) =

R(s) 1 + G2 (s)G3 (s)G6 (s) + G3 (s)G4 (s)G5 (s) + G1 (s)G2 (s)G3 (s)G4 (s)[G7 (s) − G8 (s)]

2-6 解:

① 将 G1 (s) 与 G1 (s) 组成的并联环节和 G1 (s) 与 G1 (s) 组成的并联环节简化,它们的 等效传递函数和简化结构图为:

G12 (s) = G1 (s) + G2 (s)

G34 (s) = G3 (s) − G4 (s)

② 将 G12 (s), G34 (s) 组成的反馈回路简化便求得系统的闭环传递函数为:

G12 (s) G1 (s) + G2 (s)C(s) =R(s) 1 + G12 (s)G34 (s) 1 + [G1 (s) + G2 (s)][G3 (s) − G4 (s)]

2-7 解:

由上图可列方程组:

[E (s)G1 (s) − C (s)H 2 (s)]G2 (s) = C (s) C (s)

= E (s) R(s) − H1 (sG2 (s)

联列上述两个方程,消掉 E (s) ,得传递函数为:

G1 (s)G2 (s) C(s)

=

R(s) 1 + H1 (s)G1 (s) + H 2 (s)G2 (s)

联列上述两个方程,消掉 C (s) ,得传递函数为:

1 + H 2 (s)G2 (s) E(s)

=

R(s) 1 + H1 (s)G1 (s) + H 2 (s)G2 (s)

2-8 解:

将①反馈回路简化,其等效传递函数和简化图为:

0.4 2s + 1 = 1 G (s) = 1

0.4 * 0.5 5s + 3 1 +

2s + 1

将②反馈回路简化,其等效传递函数和简化图为:

1 2

5s + 3 s + 0.3s + 1 G (s) = =2 3 2

0.4 5s + 4.5s + 5.9s + 3.4 1 + 2

(s + 0.3s + 1)(5s + 3)

将③反馈回路简化便求得系统的闭环传递函数为:

0.7 * (5s + 3) 3 2 Θ o (s) 3.5s + 2.1 = =

Θi (s) 0.7 * Ks(5s + 3) 5s 3 + (4.5 + 3.5K )s 2 + (5.9 + 2.1K )s + 3.4

1 +

5s

3-3

解:该二阶系统的最大超调量:

σ p = e

−ζ−ζ

2

π /

*100%

当σ = 5% 时,可解上述方程得:

p

ζ =

0.69

当σ = 5% 时,该二阶系统的过渡时间为:

p

t s ≈ 3

ζ

wn

所以,该二阶系统的无阻尼自振角频率 wn ≈3= 3-4 解:

ζ

t s

3= 2.17

0.69 * 2

由上图可得系统的传递函数:

⑴ 若

10 * (1 + Ks)

C (s) s(s + 2) 10 * (Ks + 1)== 2 =

s + 2 * (1 + 5K )s + 10 R(s) 1 +s(s + 2)

所以 wn =,ζwn = 1 + 5K

K ≈ 0.116 = 0.5 时,

ζ

所以 K ≈ 0.116 时,= 0.5

ζ

⑵ 系统单位阶跃响应的超调量和过渡过程时间分别为:

σ p =

e

−ζ

π /

2

*100% = e

−0.5*3.14 /

*100% ≈ 16.3%

ts = 3 =ζ

≈ 1.9 0.5 *

3

wn

⑶ 加入 (1 + Ks ) 相当于加入了一个比例微分环节,将使系统的阻尼比增大,可以有效

地减小原系统的阶跃响应的超调量;同时由于微分的作用,使系统阶跃响应的速度(即变

化率)提高了,从而缩短了过渡时间:总之,加入 (1 + Ks ) 后,系统响应性能得到改善。

3-5 解:

由上图可得该控制系统的传递函数:

C(s)

10K1 R(s) =τ + 1)s +

s 2 + (101

二阶系统的标准形式为:

10K

C (s)

R(s)= w 2n

s 2 + 2w

ζw s + 2n

n

所以

wn 2 = 10K1 2ζwn = 10τ

+ 1

σ p=−ζπ / e

ζ 2

*100%

t π

p =wn − ζ 2

σ p =

9.5%

t 0.5

p = 可得

ζ =

0.6

wn = 7.85

w2 n = 10K1

ζ =

0.6

2ζw和

n = 10τ

wn = 7.85

可得:

+ 1

K1 = 6.16

τ = 0.84

t s ≈ 3

ζ

wn

= 0.64

3-6 解:⑴ 列出劳斯表为:

因为劳斯表首列系数符号变号 2 次,所以系统不稳定。 ⑵ 列出劳斯表为:

因为劳斯表首列系数全大于零,所以系统稳定。 ⑶ 列出劳斯表为:

因为劳斯表首列系数符号变号 2 次,所以系统不稳定。

3-7 解:系统的闭环系统传递函数:

K (s +1)

C (s) s(2s +1)(Ts +1) K (s +1)

= =

R(s) 1 + K (s +1)

s(2s +1)(Ts +1)

K (s +1)

= 3

2Ts+ (T + 2)s 2 + (K +1)s + K

列出劳斯表为:

s3 2T K +1

s2 T + 2 K

(K +1)(T + 2) − 2KT s1

sK

(K + 1)(T + 2) − 2KT > 0 , K > 0 T > 0 ,T + 2 > 0 ,T + 2

T > 0 K > 0 , (K + 1)(T + 2) − 2KT > 0

(K +1)(T + 2) − 2KT = (T + 2) + KT + 2K − 2KT

= (T + 2) − KT + 2K = (T + 2) − K (T − 2) > 0 K (T − 2)

3-9 解:

由上图可得闭环系统传递函数:

C (s) KK2 K3

=R(s) 2 3 2 3 2 3

K

代入已知数据,得二阶系统特征方程:

(1 + 0.1K )s2 − 0.1Ks − K =

列出劳斯表为:

s2 1 + 0.1K s1 − 0.1K s0

− K

− K

可见,只要放大器 −10

3-12 解:系统的稳态误差为:

sess = lim e(t ) = lim sE (s) = lim R(s) s →0 1 t →∞ s→0 + G0 (s)

⑴ G0 (s) =

10

s(0.1s + 1)(0.5s + 1)

系统的静态位置误差系数:

K p = lim G 0(s) = lim

s →0

10

= ∞

s →0 s(0.1s + 1)(0.5s + 1)

系统的静态速度误差系数:

K v = lim sG0(s) = lim

s →0

10s

= 10

s →0 s(0.1s + 1)(0.5s + 1)

系统的静态加速度误差系数:

K s G a = lim

2 s→0

0(s) = lim

10s 2

= 0

s→0 s(0.1s + 1)(0.5s + 1)

当 r (t ) = 1(t ) 时, R(s) =

1

s

s1

ess = *= 0

s→0 10 s1 +s(0.1s + 1)(0.5s + 1)

当 r (t ) = 4t 时, R(s) =

4

s 2

e ss = lim

s 4

2= 0.4

s →0 1 +s(0.1s + 1)(0.5s + 1) s 3

当 r (t ) = t 时, R(s) = 2

2

s 2

ess = lim3= ∞

s →0 10 s

1 +

s(0.1s + 1)(0.5s + 1)

当 r(t) = 1(t) + 4t + t 时, R(s) = 2

1 4 2s s 2 s 3

ess = 0 + 0.4 + ∞ = ∞

3-14 解:

由于单位斜坡输入下系统稳态误差为常值=2,所以系统为 I 型系统

设开环传递函数 G(s) =

K

s(s2 + as + b)

K

= 0.5 b

闭环传递函数 φ(s) =G(s) =

1 + G(s) s3 + as2 + bs + K

Q s = −1 ± j 是系统闭环极点,因此

s3 + as2 + bs + K = (s + c)(s2 + 2s + 2) = s3 + (2 + c)s2 + (2c + 2)s + 2c

⎧K = 0.5b ⎪K = 2c ⎪ ⎨

b = 2c + 2 ⎪ ⎪⎩a = 2 + c

所以 G(s) =

⎧K = 2

⎪a = 3 ⎪ ⎨

b = 4 ⎪ ⎪1 ⎩c =

2

。 2

s(s+ 3s + 4)

4-1

(a)

(b)

(c)

(d)

4-2

p p 1 = 0,2 = 0, p3 = −1

1. 实轴上的根轨迹

(−∞, −1) (0, 0)

1

2. n − m = 3

3 条根轨迹趋向无穷远处的渐近线相角为

180°(2q + 1)

(q = 0,1)

ϕ =±= ±

60a °

,180° 3

渐近线与实轴的交点为

∑n

m

p

i

− ∑ zi

σ =i =1

a

j =1

=0 − 0 −1 = − 1

m

3 3

3. 系统的特征方程为

1+G(s) = 1 +

K

s2

(s +1)

= 0

K = − s2

(s +1) = −s3 − s2

dK = − 3s2 − 2s =

s(3s + 2) = 0

0ds

根 s1 = 0 (舍去)

s2 = −

4. 令 s = jω

代入特征方程 1+G(s) = 1 +

K

s2

(s +1)

= 0 s2 (s +1) + K =0 ( jω )2 ( jω +1) + K =0

−ω 2

( jω +1) + K =0

K − ω 2 − jω =0 ⎧⎨K − ω 2 =0 ⎩ω

= 0

ω=0

(舍去)

与虚轴没有交点,即只有根轨迹上的起点,也即开环极点

p 1,2 = 0

在虚轴上。

2

5-1

G(s) =

5 0.25s +1 5 G( jω ) =

0.25 jω +1

A(ω ) ϕ(ω) = − arctan(0.25ω)

ω=4

输入 r(t) = 5 cos(4t − 30°) = 5 sin(4t +

60°) A(4) =系统的稳态输出为

= ϕ(4) = − arctan(0.25 * 4) = −45°

c(t ) = A(4) * 5 cos[4t − 30° + ϕ(4)]

= 5 cos(4t − 30° − 45°)

= 17.68 cos(4t − 75°) = 17.68 sin(4t +15°)

sin α = cos(90° −α ) = cos(α − 90°) = cos(α + 270°)

c(t ) = A(4) * 5 sin[4t + 60° + ϕ(4)]

= 5 sin(4t + 60° − 45°)

= 17.68 sin(4t +15°)

1

G( jω ) =(1 + jω )(1 + j 2ω )

或者,

5-3

1

(2) G(s) =(1 + s)(1 + 2s)

A(ω ) ϕ(ω) = − arctan ω − arctan 2ω

2 )

ϕ(ω) = − arctan ω − arctan 2ω = −90° arctan ω + arctan 2ω = 90°

ω = 1/(2ω)

2

ω = 1/ 2

A(ω ) == 0.47 3

与虚轴的交点为(0,-j0.47)

(ω)

1

(3) G(s) =

1

s(1 + s)(1 + 2s) 1 G( jω ) =

jω (1 + jω )(1 + j2ω )

1 ϕ(ω) = −90° − arctan ω − arctan 2ω A(ω ) 2 )

ϕ(ω) = −90° − arctan ω − arctan 2ω = −180° ω = 1/(2ω)

2 ω = 1/ 2

arctan ω + arctan 2ω = 90°

A(ω ) 2

= = 0.67

3

与实轴的交点为(-0.67,-j0)

)

ω (4) G(s) =

1 1 G( jω ) = s2 (1 + s)(1 + 2s) ( jω )2 (1 + jω )(1 + j 2ω )

ϕ(ω ) = −180° − arctan ω − arctan 2ω A(ω ) 2 )

ϕ(ω) = −180° − arctan ω − arctan 2ω = −270° ω = 1/(2ω)

2 ω = 1/ 2

arctan ω + arctan 2ω = 90°

A(ω ) = 0.94

与虚轴的交点为(0,j0.94)

ω

)

2

5-4

(2)ω1 = 0.5 ,ω2 = 1 , k = 1 ,υ = 0

(3)ω1 = 0.5 ,ω2 = 1 , k = 1 ,υ = 1

(4)ω1 = 0.5 ,ω2 = 1 , k = 1 ,υ = 2

5-6

G(s) = 1

是一个非最小相位系统

s −1

3

o 1 G( jω ) ==−1 − jω ) j ( −180+arctgω )

jω −1 1 G(s) = 是一个最小相位系统 s +1

1 G( jω ) ==− jω ) − jarctgω

jω +1

5-8(a)

ω = 0

ω = ∞

-1

X (ω )

ω = 0

+

系统开环传递函数有一极点在 s 因此乃氏回线中半径为无穷小量ε 的半圆 平面的原点处,弧 对应的映射曲线是一个半径为无穷大的圆弧:

ω :0− → 0+ ;θ :-90°→ 0°→ +90°; ϕ(ω) :+90°→ 0°→ -90° N=P-Z, Z=P-N=0-(-2)=2 闭环系统有 2 个极点在右半平面,所以闭环系统不稳定 (b)

jY (ω )

ω = 0−

ω = ∞

ω = 0+

4

系统开环传递函数有 2 个极点在 s 平面的原点处,因此乃氏回线中半径为无穷小量ε 的半圆

弧对应的映射曲线是一个半径为无穷大的圆弧:

ω :0− → 0+ ;θ :-90°→ 0°→ +90°; ϕ(ω) :+180°→ 0°→ -180° N=P-Z, Z=P-N=0-0=0 闭环系统有 0 个极点在右半平面,所以闭环系统稳定 5-10

(1) G(s)H (s) =K Ts +1= K

2.28K s +1 =s + 2.28

2.28

(2) G s ( ) H s ( ) K1 K 1

=2.28K

= =

s s +1

2.28

−90°

1

(3) G(s)H (s) = K τ s +1

K s +1 = 0.5=

4K (s + 0.5) 2

2

2

s +1

2

b

5

11120 = a −20 lg K + 20 = 40 0.5 0.5 0.5 1

−20 lg K = 20 lg

0.5

20 lg(K )−1 = 20 lg 2 G(s)H (s) =

K = 1/ 2 = 0.5

4K (s + 0.5) 2(s + 0.5)2

s2 (s + 2) s(s + 2)

90°

5-11

jY (ω)

ω = 0

G(s)H (s) =

K K ⇒ G( jω )H ( jω ) s(s +1)(3s +1) = jω ( jω +1)(3 jω +1)

arctan ω + arctan 3ω = 90°

ϕ(ω ) = −90° − arctan ω − arctan 3ω = −180° ω = 1/(3ω)

2

ω = 1/ 3

A(ω ) 3

= K = 1

4

Kc = 4/3 = 1.33

6

6-2 (1)

2

6 ω G(s) =2 =2

2

s(s+ 4s + 6) s(s+ 2ξωωn s + n )

2

ω = ω 2.45, 6 n ξ =n

2ξω =4

n

4 2ωn

= 0.816 6

K = 1

所以,ωc = 1 20lgK = 0

⎛ 2ξω / ω ⎞ ⎛ 2 * 0.816 *1/ 2.45 ⎞

ϕ (ω ) = −90° − c n= −90° − arctg

⎜ c ⎜ 1 −1/ 2.452 ⎟ 2 2 ⎟ 1 − ω / ω

⎝ ⎠ ⎝ c n ⎠

⎛ 2 * 0.816 *1 / 2.45 ⎞ ⎛ 0.666 ⎞

= −90° − arctg = −90° − arctg = −90° − arctg 0.7995⎜1 −1 / 2.452⎟ ⎜0.833 ⎟

⎝ ⎠ ⎝ ⎠ = −90° − 38.64° = −128.64°

γ = 180° + ϕ (ωc ) = 180° −128.64° = 51.36°

[1**********]-10--30-40

(2)

ω1 = 1, ω2 =1/0.2=5

⎛ 2ξω / ω ⎞ ⎛ ω ⎞ ⎛ ω ⎞

c

− arctg c ϕ (ω ) = −90° − c n+ arctg

⎜ ⎜ ⎟ ⎜ ⎟ c 2 2 ⎟ 1 − ω / ω ω ω ⎝ c n ⎠ ⎝ 1 ⎠ ⎝ 2 ⎠

1 ⎞ ⎛ ⎛ 1 ⎞

= −128.64° + − ⎜⎟ ⎜⎟ = −128.64° + 45° −11.31° = −94.95°

1 ⎠ 5 ⎠ ⎝ ⎝

γ = 180° + ϕ (ωc ) = 180° − 94.95° = 85.05°

1

课后答案网

L(ω) (dB )

50 403020100-10-20--40

G(s) =

ω = 1,

10

s(0.5s +1)(0.1s +1)

20 lg K =20lg10=20dB

ω1 = 1/ 0.5 = 2, ω2 = 1 / 0.1 = 10

ω1 = 2 时, L(ω1 ) = 20 − 20(lg 2 − lg1) = 20lg10 − 20 lg 2 = 20lg5 = 14dB ω2 = 10 时, L(ω2 ) = 14 − 40(lg10 − lg 2) = −13.96dB

所以,ω1

L(ω1 ) = 40(lg ωc − lg 2) = 40(lg ωc / 2) = 14dB

ωc = 4.48

ϕ (ωc ) = −90° − arctg 0.5ωc − arctg 0.1ωc = −90° − arctg 2.24 − arctg 0.448

= −90°− 65.94°− 24.13° = −180.07°

γ = 180° + ϕ (ωc ) = 180° −180.07° = −0.07°

L (ω )(dB)

[1**********]-10 -20 -30 -40

(2)

G(s)Gc (s) =

ω = 1,

10(0.33s +1)

20 lg K =20lg10=20dB

ω1 = 1 / 0.5 = 2, ω2 = 1/ 0.33 = 3, ω3 = 1 / 0.1 = 10, ω4 = 1/ 0.033 = 30

ω2 = 3 时, L(ω1 ) − L(ω2 ) = 40(lg ω2 − lg ω1 ) 14 − L(ω2 ) = 40(lg 4.35 − lg 2) L(ω2 ) = 7dB

L(ω3 = 10) − L(ω2 = 3) = −20(lg ω3 − lg ω2 ) = −3.37dB

所以ω2

L(ω2 ) = 20(lg ωc 2 − lg ω2 ) = 20(lg ωc 2 / 3) = 7dB

ωc 2 = 6.72

ϕ (ωc ) = −90° − arctg 0.5ωc 2 − arctg 0.1ωc 2 + arctg 0.33ωc 2 − arctg 0.033ωc

2

= −90° − arctg 3.36 − arctg 0.672 + arctg 2.22 − arctg 0.222

= −90°− 73.43°− 33.90°+ 65.75°−12.52° = −144.1°

γ 2 = 180° + ϕ (ωc 2 ) = 180° −144.1° = 35.9°

L(ω )(dB)

50 40 20100--20-30-40

-40dB /dec

20dB /dec

3

猜你想看
相关文章

Copyright © 2008 - 2022 版权所有 职场范文网

工业和信息化部 备案号:沪ICP备18009755号-3