当前位置:首页 > 申请书大全 > [树突状细胞肿瘤疫苗的研究及实践进展] 树突细胞疫苗
 

[树突状细胞肿瘤疫苗的研究及实践进展] 树突细胞疫苗

发布时间:2019-07-31 09:31:22 影响了:

中华临床医师杂志(电子版)2014年9月第8卷第17期 Chin J Clinicians(Electronic Edition),September 1,2014,Vol.8,No.17

·3181·

·综述·

树突状细胞肿瘤疫苗的研究及实践进展

袁媛 苏川 束永前

【摘要】 癌症是威胁全球人民健康的头号杀手之一,传统治疗手段(如手术、放疗、化疗)虽有进展,但癌症患者的预后仍不令人满意。发展新治疗策略仍迫在眉睫。由于树突状细胞疫苗为基础的免疫治疗能活化机体免疫细胞,通过识别肿瘤相关抗原特异性杀灭肿瘤细胞,而不伤及正常细胞,目前已经成为肿瘤治疗的一个热点。

【关键词】 树突细胞; 免疫疗法; 癌症疫苗

Dendritic cells-based tumor vaccines: advances in research and practice Yuan Yuan*, Su Chuan, Shu Yongqian. *Department of Oncology, Xuzhou Central Hospital, Xuzhou 221009, China Corresponding author: Shu yongqian, Email: njshuyongqian@yeah.net

【Abstract】 Cancer is one of the top killers which threatens global people"s health. Although current treatments such as surgery, radiotherapy and chemotherapy have been improved, prognosis remains unsatisfactory. Developing new therapeutic strategy is still an urgent demand. Dendritic cell vaccines based immunotherapy activated immune cells can specifically kill tumor cells by recognition of tumor-associated antigens without injuring normal cells. It has become a highlight for tumor therapy.

【Key words】 Dendritic cells; Immunotherapy; Cancer vaccines

据世界卫生组织统计,目前全球每年新发恶性肿瘤1 000万例以上,其中死亡人数逾700万。在过去10年中,全球癌症发病率增长了22%,未来还将以每年11‰的比例递增。尽管有手术、放疗、化疗这三大治疗手段,目前仍没有办法根治肿瘤。

近20余年来,有关肿瘤组织中树突状细胞(dendritic cells,DC)浸润程度与肿瘤转移及临床

DC的基础性研究及以预后关系的报道[1]陆续出现,

DC为基础的肿瘤疫苗治疗正成为研究的热点。

DC是目前已知体内最强大的抗原提呈细胞(antigen presenting cell,APC),其抗原提呈能力为其他提呈细胞的数百倍,可激活幼稚CD4+ T辅助细胞和未接触过抗原的CD8+细胞毒性T细胞。基于DC的免疫治疗已经被用于产生肿瘤特异性抗原提呈并生成细胞毒性T淋巴细胞(cytotoxic T lymphocytes,CTL)是对抗肿瘤细胞的有效手段[2-5]。采用患者自身抗免疫细胞杀伤肿瘤细胞的个体化过继免疫治疗有望成为治疗肿瘤的另一种有效方法[6]。

DOI:10.3877/cma.j.issn.1674-0785.2014.17.024

作者单位:221009 江苏省,徐州市中心医院肿瘤内科(袁媛);南京医科大学病原生物学系(苏川);南京医科大学第一附属医院肿瘤科(束永前)

通讯作者:束永前,Email: njshuyongqian@yeah.net

一、不同抗原负载模式的DC肿瘤疫苗

目前DC的体外培养已经是一项常用的生物治疗技术,单个核细胞来源的DC(monocyte-dervied DC,MoDC)最为常用。肿瘤疫苗制备的常用方法可分为四类:(1)特异性肿瘤抗原肽负载DC:肿瘤抗原肽可以通过人工合成、弱酸洗脱肿瘤表面的MHC-I类抗原肽获得;(2)肿瘤细胞抗原负载DC:利用超声波破碎、反复冻融或放射线辐照肿瘤细胞等方法获取肿瘤细胞性抗原,然后致敏DC制备疫苗;(3)肿瘤细胞-DC融合体疫苗:DC与肿瘤细胞融合后的杂交细胞可获得双亲本细胞的表型特性;(4)肿瘤细胞RNA或cDNA负载DC。

1. 肿瘤抗原肽负载疫苗:将肿瘤抗原肽(包括合成肽)与DC共育,DC吞噬肿瘤表位肽之后,可诱导CD8+CTL及CD4+ T辅助细胞的应答及Th1和Th2细胞因子的产生,从而激发机体的抗肿瘤细胞免疫反应。目前已知的抗原肽来源于众多肿瘤相关抗原(tumor- associated anti-gen,TAA),包括HPV蛋白[7]、癌胚抗原(carcinoempyonic antigen,CEA)[8-9],人端粒酶反转录酶(human telomerase

[10]

,黑色素瘤抗原[11],reverse transcriptase,hTERT)

p53[12-14],Her- 2 /Neu[15-16]等。

用肿瘤抗原多肽致敏DC具有很好的靶向性,不易产生自身免疫性疾病。但仅能提供有限的肿瘤

·3182·

中华临床医师杂志(电子版)2014年9月第8卷第17期 Chin J Clinicians(Electronic Edition),September 1,2014,Vol.8,No.17

抗原表位,MHC限制性的存在,导致容易发生肿瘤细胞免疫逃逸。

2. 肿瘤全细胞抗原负载疫苗:由于目前只有一部分肿瘤的肿瘤相关抗原或肿瘤特异性抗原已知,大部分肿瘤仍未明确。而肿瘤全细胞抗原含有全部的肿瘤抗原,因而无需明确肿瘤特异性抗原,可提供大量的肿瘤抗原表位,无MHC限制性,因此出现肿瘤细胞逃逸的可能性较小。临床应用发现安全有效,并可以在晚期转移性实体瘤患者中达到31.7%(13/41)的临床获益[17],在肾癌、恶性黑色素瘤、恶性脑胶质瘤等疾病中部分患者生存时间得到了延长。缺点在于同时存在自身抗原,可诱发广泛的免疫反应;肿瘤抗原不明确,免疫检测困难;需要较多的肿瘤组织,制作费时;对于无法手术的患者不能应用。

3. 肿瘤细胞来源的基因修饰的疫苗:肿瘤抗原多为肿瘤相关性抗原,免疫原性弱。肿瘤抗原编码基因、细胞因子基因或趋化因子基因导入DC增强了免疫原性[18],并可在期内持续表达肿瘤抗原,增强了MHC-Ⅰ类和MHC-Ⅱ分子递呈抗原的能力。转染RNA[19]也可以高效的诱导特异性CTL 细胞的免疫应答,体外研究已在多种肿瘤上证明其有效性。但也存在运送效率不稳定、技术要求高、蛋白表达不稳定的问题。同时由于正常体细胞抗原表位的存在,致敏DC后能表达MHC-Ⅰ、Ⅱ类分子及其刺激分子,会使疫苗的抗瘤作用明显提高。

二、DC肿瘤疫苗联合应用模式

目前癌症作为一种慢性病,通常采用综合的治疗模式。患者可以接受各种模式序贯甚至同步治疗,以期达到更好的疗效、更低的毒性。在DC疫苗的应用实践中,联合放化疗以及其他模式的生物免疫治疗,可以增强DC疫苗的免疫功能。

1. 联合放疗:由于放疗可以引起肿瘤细胞DNA损伤及细胞表型改变,因此也有诱发DC介导的抗肿瘤免疫的潜能[20]。DC行使肿瘤免疫的关键在于递呈肿瘤抗原,放疗可引起免疫原性肿瘤细胞死亡,肿瘤抗原释放增加,无疑增加了DC吞噬并递呈肿瘤抗原的机会。此外放疗也改变了肿瘤细胞微环境,产生活性氧(reactive oxygen species ,ROS),引发内质网(endoplasmic reticulum,ER)压力,释放免疫活化细胞因子及趋化因子,释放损伤相关分子(damage-associated molecular patterns,DAMPs),增强了细胞毒性T淋巴细胞引起的肿瘤细胞溶解作用。放疗本身可以诱发抗肿瘤免疫,

这也可以解释放疗以外的肿瘤消退放疗旁观者效应[21]。因此近年来人们的思维模式已经发生转变,倾向于在对局部肿瘤实施放疗控制负荷以后,加以额外的免疫治疗强化、保障放疗之后的抗肿瘤免疫反应[22]。目前存在的挑战是如何确立最有利的组合和时间表,在控制局部肿瘤的同时,全身免疫的诱导显然是必要的。需要给免疫细胞时间从放疗损伤中恢复,因此单次放疗之间长间隔可能是有益的。

2. 联合化疗:化疗对数杀灭肿瘤细胞的同时,本身刺激了肿瘤抗原的广泛释放,刺激了免疫细胞发挥强大的抗原提呈作用。而小剂量持续化疗较之于传统化疗,在杀伤癌细胞的同时,还能影响癌周微环境,抑制新生血管内皮细胞的生长[23-24]。在小鼠大肠癌模型中,DC疫苗加入FOLFRI方案能够抑制化疗后髓源性免疫抑制细胞(myeloid-derived suppressor cells,MDSC) 和监管T细胞(regulatory T-cells,Treg)的反弹,增加CEA特异性Th1和CTL反应,增强抗肿瘤作用[9]。值得注意的是,动物模型已经显示,高剂量化疗与肿瘤相关的耐受和改进的疫苗反应的瞬时逆转相关[25-26]。在小鼠和人体试验均发现给予化疗药吉西他滨后Treg比例下降[27],原因在于后者属于化疗敏感的增殖活跃细胞,其增殖比例远超过非监管T细胞(non regulatory T-cells)。而Treg的免疫监控直接影响疫苗特异性细胞毒性T细胞的活化。近年的一些临床前研究发现化疗药,尤其是环磷酰胺(cyclophosphamide),在一定条件下可以增强疫苗的免疫反应[28]。目前这一概念已经被引入一些临床试验[29-31]。

Krishnadas等[32]报道1例参加Ⅰ期临床试验的复发性神经母细胞瘤Ⅳ期患者,该患者在接受了标准治疗(包括多药化疗,肿瘤切除术,干细胞移植,放射治疗,和抗GD2单克隆抗体治疗)之后,仍为持续性带瘤状态。遂予化疗药物地西他滨上调癌睾丸抗原的表达,随后靶向肿瘤睾丸抗原MAGE-A1,MAGE-A3,和NY-ESO-1的DC疫苗注射。3个周期后,这例患者达到完全缓解,停治疗随访1年,仍没有发现复发转移的证据。并且这例患者还被发现有在MAGE-A3特异性T细胞增加。

3. 联合其他免疫治疗:目前已知,血管内皮生长因子(vascular endothelial growth factor,VEGF)通过抑制肿瘤抗原呈递封锁髓系DC分化和成熟,

中华临床医师杂志(电子版)2014年9月第8卷第17期 Chin J Clinicians(Electronic Edition),September 1,2014,Vol.8,No.17

·3183·

导致肿瘤的免疫耐受[33-37],这一过程主要由血管内皮生长因子受体-1(VEGF receptor-1,VEGFR-1)介导[38]。而抗VEGF治疗则可以减少CD4+CD25+ Treg细胞数,增加CTL生成,增强疫苗作用[39-40]。一项针对血清学复发的前列腺癌患者的研究已经证实疫苗和贝伐单抗联合应用可以诱导高免疫反

应[41]。

贝伐单抗还可能通过促进T细胞向肿瘤归巢改善疫苗功能,已经有将DC疫苗联合贝伐单抗联

合应用于临床的一期研究[42]。

当DC疫苗和抗CD20抗体(美罗华)联合应用时也出现了协同效应,弥漫大B细胞淋巴瘤的小鼠模型在给予化疗、美罗华后,应用DC疫苗出现了全身性长期的抗肿瘤

免疫[43]。

细胞毒T淋巴细胞相关抗原4(cytotoxic T lymphocyte-associated antigen-4,CTLA-4)与B7分子结合后诱导T细胞无反应性,参与免疫反应的负调节。在结肠癌小鼠模型中发现联合CTLA-4封锁

和耗竭CD25+ Treg,

可增强DC疫苗的肿瘤免疫[44]。程序性细胞死亡蛋白1( Programmed cell death protin-1,PD1)具有与CTLA4相似的结构,通过表达于肿瘤微环境中的配体PDL1与PDL2介导T细胞抑制作用并可能堵塞效应介导的CTL活性[45-46]。阻断抑制途径药物,如阻断CTLA-4和PDL-1/PD-1途径的药物正在在临床研究作为独立的治疗及与肿瘤特异性疫苗一起应用于许多不同的恶性肿瘤。

4. 辅助治疗的尝试:晚期和转移性肿瘤的患者由于肿瘤本身的影响以及常规的治疗措施(长期放化疗),导致免疫抑制,并不利于DC疫苗效应的发挥。理想的情况是疾病早期及肿瘤负荷极小时疗效最好。DC疫苗作为术后辅助治疗是否有必要?Fracol等[47]给予HER-2阳性的乳腺原位导管癌(ductal carcinoma in situ,DCIS)患者术前应用HER-2负载的DC疫苗4~6周,术后复检发现23.7%(9/38)肿瘤完全退化,而其中雌激素受体(estrogen receptor,ER)阴性的患者38.1%(8/21)肿瘤完全退化,雌激素受体阳性的仅5.9%(1/17)。虽然此项研究针对术前治疗,鉴于HER-2阳性ER阴性的DCIS患者有限的辅助治疗策略,HER-2负载DC疫苗或许可以成为预防复发的选择。

三、抗DC疫苗凋亡

在正常情况下,抗原递呈后,T细胞可反馈性促进DC细胞凋亡。肿瘤还可以通过抑制DC前体细胞的成熟、促进DC细胞的凋亡来抑制DC细胞功能达到免疫逃避。肿瘤所处的微环境更不利于

DC的生存。与葡萄膜黑色素瘤细胞共培养的DC凋亡增加,同时产生IL-10、IL-12的能力减弱,混合淋巴细胞反应中异源性T细胞的增殖受抑制[48]。因而抑制DC凋亡从而上调疫苗的免疫功能可能成为治疗肿瘤的另一种方法。

Escribano等[49]发现趋化因子受体CCR7在DC成熟时表达上调,当其与配体CCL19和CCL21结合时,激活Akt1途径并促进NF-κB向核内转运从而抗凋亡。常见的凋亡受体及凋亡相关蛋白在DC上均有表达,如Fas、Bim、穿孔素等。韩国学者Kim等[50]等将人乳头瘤病毒(HPV)16E7抗原提呈DC转染了靶向BIM的抗凋亡小干扰RNA(small interfering RNA,siRNA)siBIM后,增加了对T细胞介导死亡的抵抗,从而增强E7特异性CD8+ T细胞在体外和体内的活化。其中,siBIM产生了最强的E7-特异性E7-特异性CD8+ T细胞免疫,并且在免疫小鼠可产生明显的治疗作用。同一团队[51]用siRNA下调了DC的张力蛋白同源物(phosphatase and tensin homologue,PTEN)导致Akt依赖的成熟,这反过来又导致了表面共刺激分子和趋化因子受体CCR7的显著上调,导致在体外活化的T细胞活性增加和体内活化T细胞向引流淋巴结迁移。此外,这些PTEN siRNA转染的DC(DC/siPETN)获得生存的增加,减少了从GM-CSF剥夺引起的凋亡或抗原特异性CD8+ T细胞的杀伤。最重要的是,DC/ siPETN产生更多的肿瘤抗原特异性CD8+ T细胞,在免疫小鼠的抗肿瘤作用更强,提示通过siRNA系统操纵的PI3K/Akt通路可以提高基于DC疫苗的疗效。以上两项研究提示通过siRNA系统阻断DC凋亡通路可能减少DC疫苗的衰减增强抗肿瘤免疫活性。

四、展望

总之,一个成功的疫苗需要有识别抗原的能力,提供一个抗原呈递的平台,并且能够克服肿瘤免疫抑制的微环境;DC疫苗可以满足以上要求,是一个针对肿瘤免疫治疗不错的选择。未来还需要针对肿瘤特殊的免疫抑制环境,整合DC疫苗以及其他的免疫治疗模式,形成更强大的肿瘤免疫治疗组合。进一步理解癌症和免疫系统之间的相互关系,形成新的肿瘤免疫学和免疫治疗概念可能有助于疫苗的有效性的改进。如何将肿瘤疫苗与传统的治疗方式结合、靶向免疫抑制的机制和临床免疫学现象还需要进一步的研究探讨。

·3184·

中华临床医师杂志(电子版)2014年9月第8卷第17期 Chin J Clinicians(Electronic Edition),September 1,2014,Vol.8,No.17

参 考 文 献

[1]

Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome[J]. Science, 2006, 313(5795): 1960-1964. [2]

Kalinski P, Okada H. Polarized dendritic cells as cancer vaccines: directing effector-type T cells to tumors[J]. Semin Immunol, 2010, 22(3): 173-182. [3] Steinman RM. Decisions about dendritic cells: past, present, and future[J]. Annu Rev Immunol, 2012, 30: 1-22.

[4]

Barth RJ, Fisher DA, Wallace PK, et al. A randomized trial of ex vivo CD40L activation of a dendritic cell vaccine in colorectal cancer patients: tumor-specific immune responses are associated with improved survival[J]. Clin Cancer Res, 2010, 16(22): 5548-5556. [5]

Lesterhuis WJ, de Vries IJ, Schreibelt G, et al. Route of administration modulates the induction of dendritic cell vaccine-induced antigen-specific T cells in advanced melanoma patients[J]. Clin Cancer Res, 2011, 17(17) : 5725-5735. [6]

Ma Y, Zhang Z, Tang L, et al. Cytokine-induced killer cells in the treatment of patients with solid carcinomas: a systematic review and pooled analysis[J]. Cytotherapy, 2012, 14(4): 483-493. [7]

Wang HL, Xu H, Lu WH, et al. In vitro and in vivo evaluations of human papillomavirus type 16 (HPV16)-derived peptide-loaded dendritic cells (DCs) with a CpG oligodeoxynucleotide (CpG-ODN) adjuvant as tumor vaccines for immunotherapy of cervical cancer[J]. Arch Gynecol Obstet, 2014, 289(1): 155-162. [8]

Hong X, Dong T, Hu J, et al. Synergistical toll-like receptors activated dendritic cells induce antitumor effects against carcinoempyonic antigen-expressing colon cancer[J]. Int J Colorectal Dis, 2013, 28(1): 25-33. [9]

Kim HS, Park HM, Park JS, et al. Dendritic cell vaccine in addition to FOLFIRI regimen improve antitumor effects through the inhibition of immunosuppressive cells in murine colorectal cancer model[J]. Vaccine, 2010, 28(49): 7787-7796. [10]

Chen L, Liang GP, Tang XD, et al. In vitro anti-tumor immune response induced by dendritic cells transfected with hTERT recombinant adenovirus[J]. Biochem Biophys Res Commun, 2006, 351(4): 927-934. [11]

Okada N, Iiyama S, Okada Y, et al. Immunological properties and vaccine efficacy of murine dendritic cells simultaneously expressing melanoma-associated antigen and interleukin-12[J]. Cancer Gene Ther, 2005, 12(1): 72-83. [12]

Rahma OE, Ashtar E, Czystowska M, et al. A gynecologic oncology group phase II trial of two p53 peptide vaccine approaches: subcutaneous injection and intravenous pulsed dendritic cells in high recurrence risk ovarian cancer patients[J]. Cancer Immunol Immunother, 2012, 61(3): 373-384. [13]

Svane IM, Pedersen AE, Nikolajsen K, et al. Alterations in p53-specific T cells and other lymphocyte subsets in peast cancer patients during vaccination with p53-peptide loaded dendritic cells and low-dose interleukin-2[J]. Vaccine, 2008, 26(36): 4716-4724. [14]

Chiappori AA, Soliman H, Janssen WE, et al. INGN-225: a dendritic cell-based p53 vaccine (Ad. p53-DC) in small cell lung cancer: observed association between immune response and enhanced chemotherapy effect[J]. Expert Opinion on Biological Therapy, 2010, 10(6): 983-991. [15]

Wiedermann U, Davis AB, Zielinski CC. Vaccination for the

prevention and treatment of peast cancer with special focus on Her-2/neu peptide vaccines[J]. Breast Cancer Research and Treatment, 2013, 138(1): 1-12.

[16]

Ladjemi MZ, Jacot W, Chardès T, et al. Anti-HER2 vaccines: new prospects for peast cancer therapy[J]. Cancer Immunol Immunother, 2010, 59(9): 1295-1312.

[17] Kamigaki T, Kaneko T, Naitoh K, et al. Immunotherapy of autologous tumor lysate-loaded dendritic cell vaccines by a closed-flow electroporation system for solid tumors[J]. Anticancer Res, 2013, 33(7): 2971-2976.

[18] Dougan MG, Dranoff. Immune therapy for cancer[J]. Annu Rev Immunol, 2009, 27: 83-117.

[19] Hobo W, Strobbe L, Maas F, et al. Immunogenicity of dendritic cells pulsed with MAGE3, Survivin and B-cell maturation antigen mRNA for vaccination of multiple myeloma patients[J]. Cancer Immunology Immunotherapy, 2013, 62(8): 1381-1392.

[20] Lauber K, Ernst A, Orth M, et al. Dying cell clearance and its impact on the outcome of tumor radiotherapy[J]. Front Oncol, 2012, 2: 116. [21] Frey B, Rubner Y, Kulzer L, et al. Antitumor immune responses induced by ionizing irradiation and further immune stimulation[J]. Cancer Immunol Immunother, 2014, 63(1): 29-36.

[22] Formenti SC, S Demaria. Combining radiotherapy and cancer immunotherapy: a paradigm shift[J]. J Natl Cancer Inst, 2013, 105(4): 256-265.

[23] Pasquier E, Kavallaris M, André N. Metronomic chemotherapy: new rationale for new directions[J]. Nat Rev Clin Oncol, 2010, 7(8): 455-465.

[24] Kerbel RS, Kamen BA. The anti-angiogenic basis of metronomic chemotherapy[J]. Nat Rev Cancer, 2004, 4(6): 423-436.

[25] Borrello I, Sotomayor EM, Rattis FM, et al. Sustaining the graft-versus-tumor effect through posttransplant immunization with granulocyte-macrophage colony-stimulating factor (GM-CSF)- producing tumor vaccines[J]. Blood, 2000, 95(10): 3011-3019. [26] Koike N, Pilon-Thomas S, Mule JJ. Nonmyeloablative chemotherapy followed by T-cell adoptive transfer and dendritic cell-based vaccination results in rejection of established melanoma[J]. J Immunother, 2008, 31(4): 402-412.

[27] Rettig L, Seidenberg S, Parvanova I, et al. Gemcitabine depletes regulatory T-cells in human and mice and enhances triggering of vaccine-specific cytotoxic T-cells[J]. International Journal of Cancer, 2011, 129(4): 832-838.

[28] Emens LA, Jaffee EM. Leveraging the activity of tumor vaccines with cytotoxic chemotherapy[J]. Cancer Res, 2005, 65(18): 8059-8064.

[29] Chu CS, Boyer J, Schullery DS, et al. Phase I/II randomized trial of dendritic cell vaccination with or without cyclophosphamide for consolidation therapy of advanced ovarian cancer in first or second remission[J]. Cancer Immunol Immunother, 2012, 61(5): 629-641. [30] Park YS, Bae JH, Son CH, et al. Cyclophosphamide potentiates the antitumor effect of immunization with injection of immature dendritic cells into irradiated tumor[J]. Immunol Invest, 2011, 40(4): 383-399.

[31] Salem ML, Diaz-Montero CM, Al-Khami AA, et al. Recovery from cyclophosphamide-induced lymphopenia results in expansion of immature dendritic cells which can mediate enhanced prime-boost vaccination antitumor responses in vivo when stimulated with the

中华临床医师杂志(电子版)2014年9月第8卷第17期 Chin J Clinicians(Electronic Edition),September 1,2014,Vol.8,No.17

TLR3 agonist poly(I: C)[J]. J Immunol, 2009, 182(4): 2030-2040. [32]

Krishnadas DK, Shapiro T, Lucas K. Complete remission following decitabine/dendritic cell vaccine for relapsed neuroblastoma[J]. Pediatrics, 2013, 131(1): 336-341. [33] [34] [35]

Yang L, Carbone DP. Tumor-host immune interactions and dendritic cell dysfunction[J]. Adv Cancer Res, 2004, 92: 13-27.

Ohm JE, Carbone DP. VEGF as a mediator of tumor-associated immunodeficiency[J]. Immunol Res, 2001, 23(2-3): 263-272. Gapilovich D, Ishida T, Oyama T, et al. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo[J]. Blood, 1998, 92(11): 4150-4166. [36]

Gapilovich DI, Chen HL, Girgis KR, et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells[J]. Nat Med, 1996, 2(10): 1096-1103. [37]

Takahashi A, Kono K, Ichihara F, et al. Vascular endothelial growth factor inhibits maturation of dendritic cells induced by lipopolysaccharide, but not by proinflammatory cytokines[J]. Cancer Immunol Immunother, 2004, 53(6): 543-550. [38]

Dikov MM, Ohm JE, Ray N, et al. Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation[J]. J Immunol, 2005, 174(1): 215-222. [39]

Li B, Lalani AS, Harding TC, et al. Vascular endothelial growth factor blockade reduces intratumoral regulatory T cells and enhances the efficacy of a GM-CSF-secreting cancer immunotherapy[J]. Clin Cancer Res, 2006, 12(22): 6808-6816. [40]

Li MO, Wan YY, Sanjabi S, et al. Transforming growth factor-beta regulation of immune responses[J]. Annu Rev Immunol, 2006, 24: 99-146. [41]

Rini BI, Weinberg V, Fong L, et al. Combination immunotherapy with prostatic acid phosphatase pulsed antigen-presenting cells (provenge) plus bevacizumab in patients with serologic progression of prostate cancer after definitive local therapy[J]. Cancer, 2006, 107(1): 67-74.

[51] [50] [49] [48] [47] [46] [45] [44] [43] [42]

·3185·

Kandalaft LE, Chiang CL, Tanyi J, et al. A Phase I vaccine trial using dendritic cells pulsed with autologous oxidized lysate for recurrent ovarian cancer[J]. J Transl Med, 2013, 11: 149.

Manzur S, Cohen S, Haimovich J, et al. Enhanced therapeutic effect of B cell-depleting anti-CD20 antibodies upon combination with[J]. Clinical & Experimental Immunology, 2012, 170(3): 291-299. Saha A, Chatterjee SK. Combination of CTL-associated antigen-4 blockade and depletion of CD25 regulatory T cells enhance tumour immunity of dendritic cell-based vaccine in a mouse model of colon cancer[J]. Scand J Immunol, 2010, 71(2): 70-82.

Fife BT, Bluestone JA. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways[J]. Immunol Rev, 2008, 224: 166-182.

Keir ME, Butte MJ, Freeman GJ, et al. PD-1 and its ligands in tolerance and immunity[J]. Annu Rev Immunol, 2008, 26: 677-704. Fracol M, Xu S, Mick R, et al. Response to HER-2 pulsed DC1 vaccines is predicted by both HER-2 and estrogen receptor expression in DCIS[J]. Ann Surg Oncol, 2013, 20(10): 3233-3239. Ma J, Usui Y, Takeuchi M, et al. Human uveal melanoma cells inhibit the immunostimulatory function of dendritic cells[J]. Exp Eye Res, 2010, 91(4): 491-499.

Escribano C, Delgado-Martin C, Rodriguez-Fernandez JL. CCR7-dependent stimulation of survival in dendritic cells involves inhibition of GSK3beta[J]. J Immunol, 2009, 183(10): 6282-6295. Kim JH, Kang TH, Noh KH, et al. Enhancement of dendritic cell-based vaccine potency by anti-apoptotic siRNAs targeting key pro-apoptotic proteins in cytotoxic CD8(+) T cell-mediated cell death[J]. Immunol Lett, 2009, 122(1): 58-67.

Kim JH, Kang TH, Noh KH, et al. Enhancement of DC vaccine potency by activating the PI3K/AKT pathway with a small interfering RNA targeting PTEN[J]. Immunology Letters, 2010, 134(1): 47-54.

(收稿日期:2014-07-22)

(本文编辑:马超)

袁媛,苏川,束永前. 树突状细胞肿瘤疫苗的研究及实践进展[J/CD]. 中华临床医师杂志:电子版,2014,8(17):3181-3185.

猜你想看
相关文章

Copyright © 2008 - 2022 版权所有 职场范文网

工业和信息化部 备案号:沪ICP备18009755号-3