当前位置:首页 > 述职报告 > 浅谈轧钢加热炉的技术改造:轧钢加热炉工作原理
 

浅谈轧钢加热炉的技术改造:轧钢加热炉工作原理

发布时间:2019-05-04 04:02:27 影响了:

  【摘 要】介绍了蓄热式步进加热炉在实际生产中遇到的问题,并进行了切实有效地技术改造,从而提高了加热能力,降低了煤气消耗,取得了突出的经济效益。  【关键词】双蓄热步进式加热炉;改造;温差;炉墙
  1 概述
  国丰钢铁薄板厂一线加热炉,是燃烧纯高炉煤气、内置双蓄热式步进加热炉,炉子有效尺寸16.7m×23.7m,设计能力冷装100 t/h,热装290 t/h,加热板坯尺寸135mm×1300mm×15600mm。建成初期基本能满足生产的需要,但随着轧线产能的释放,品种的增加,加热炉出现了诸多制约生产和自身安全的问题,逐渐成为了轧钢厂产量与质量的瓶颈,所以对加热炉的改造迫在眉睫。
  2 存在问题及原因分析
  随着生产的深入,加热炉暴露出如下问题:
  2.1 加热炉实际加热能力小于设计能力,并且随着炉龄的增加加热能力逐渐缩小,生产中等温现象频繁,加热炉逐渐成为制约生产的瓶颈。
  2.2 板坯中间温度比头尾低45—70℃,中心温度比上下表面低35—45℃,下表面温度比上表面低40℃左右。
  2.3 炉墙、炉顶,蓄热室箅子多次坍塌,迫使加热炉多次停炉检修,严重影响了生产。
  2.4 蓄热室小球被大量吹入炉内,排烟温度过高,在180—200℃。
  2.5 炉压波动大,出料端向外冒火严重。
  经过现场分析总结,产生问题的原因如下:
  2.5.1 原设计是按板坯热装入炉温度920℃,来计算热装产量和供热负荷的。但是实际生产中,板坯热装入炉平均温度只有700℃左右,所以原设计的供热负荷量明显不足,使实际产量比设计小。炉内氧化铁不断增加,加热炉各系统逐渐老化,使其加热能力逐渐下降,从而加热炉成了制约生产的瓶颈。
  2.5.2 加热炉炉宽16.7m,如此宽的宽度在燃纯高炉煤气、蓄热式步进加热炉中,世界上是少有的。加热炉的超负荷生产、过宽的炉膛以及设计的不足,使得板坯加热质量严重降低。
  2.5.3 加热炉的不断老化,而轧机产量在逐步提升,加热炉被迫超负荷生产,严重强化加热。再加上加热炉为内置式,炉墙内空、煤气通道超负荷的大量高低温气体的交替冲刷,极冷极热造成炉墙倒塌等现象。支撑蓄热小球的箅子材料为普碳钢,由于煤气和烟气中含有硫化物等腐蚀性气体,且蓄热室频繁高、低温变化,蓄热室箅子耐热、耐腐蚀性能差,经一段时间腐蚀后产生坍塌现象,影响排烟温度和蓄热效果。
  2.5.4 炉子加热能力的不断降低,不得不靠加大燃料供给量的方式来保证加热能力。由于管道直径一定,只能不断增大燃料供给的流速和压力,当压力足以抵消蓄热室上层小球重力时,小球被吹入炉内。随着超负荷的强化加热,小球的不断减少,使得排烟温度逐渐增高。
  2.5.5 加热炉为三段式集中换向,换向时炉压波动大。氧化铁的不断增加、强化加热、蓄热室小球的板结、引风机的设计不合理等原因使得炉压加大,出现冒火现象。
  3 改进措施及效果
  3.1 加大原有部分燃气管道直径,增大加热炉的供热负荷,同时加大鼓风机和引风机能力。原加热炉设计采用的蓄热体是陶瓷小球,由于其换热效率低,阻力损失大,因而在改造中改用换热效率高、阻力损失小、积灰情况小的陶瓷蜂窝体作为蓄热体。两蓄热体的性能比对:陶瓷小球传热性能温度效率0.75,比表面积200—300m2/m3,换向周期 180—250s,阻力损失大,使用寿命年损耗>35%。陶瓷蜂窝体温度效率0.95,比表面积640—1280m2/m3,换向周期50—80s ,阻力损失小使用寿命一年左右。可见陶瓷蜂窝体比蓄热小球性能好。
  经过加大部分管道直径、减小阻力损失、增大蓄热效果等措施,使加热炉加热能力大大提高,超过原有设计20t/h,加热炉等温时间大大降低。
  3.2 板坯中间温度比头尾低,是因为炉子宽度太宽,空气和煤气喷口间距又较小,造成火焰长度较短,仅为炉膛宽度的2/5。所以利用重新浇筑炉墙的的机会,将加热段和均热段的空、煤气喷口间距加大,由原来的345mm改为450mm,这样加长了火焰长度,使火焰基本能到炉膛宽度的3/5,从而提高了板坯中间温度,大大降低了板坯长度方向上的温差。下表面温度比上表面低,这是因为炉子下加热负荷较小所造成。由于加热炉上下供热负荷比在设计时固定,表现为管道直径比,比例不能调节。所以在不改变管道的情况下,我们在加热和均热段炉底上分别砌筑一道补热墙,专门增加下加热供给量。这样的改造不仅提高了板坯下表面温度,而且也有利于中间温度提高,这是因为补热墙的火焰能直接冲刷板坯中间部位。改造前后板坯质量对比:改造后板坯中间温度与头尾温差15—30℃,中心温度与上下表面温差±15℃,下表面温度与上表面温差20℃左右。
  3.3 炉体内有许多相互隔离、纵横交错的煤气通道或空气通道,炉墙内的通道多了造成冷热交变应力较大。用普通性能耐火材料浇注的炉墙,存在着荷重变形温度低、线收缩大、耐压强度低、体积稳定性差、抗折强度低等不足,经过一段时间的使用后容易出现开裂、倒塌事故,使得加热炉在运行过程中炉墙跑风漏气,影响换热节能效果,特别是墙内的煤气通道和空气通道,一旦漏气还会给安全生产带来隐患。我们利用大修的机会对加热炉进行改造,力争将加热炉整体寿命达到6年以上,在此期间不出现炉墙、炉顶开裂和坍塌事故。为了降低因此事故而停炉、停产造成巨大的经济损失,我们将炉体所用耐火材料性能指标做了较大改进,把原来荷重软化温度较低的低水泥浇注料改为高荷软浇注料,对炉顶、炉墙进行整体浇注,此种浇注料荷重变形温度高、线收缩小、耐压强度高、体积稳定性强、抗折强度大。另外,原设计的锚固砖长度太短,只有450mm,而炉墙厚达1000mm所以必须加长锚固砖以增强锚固作用,考虑炉墙内空、煤气通道问题,我们只将炉墙内通道上方的锚固砖加长到800mm,以此来加强炉墙的固定作用。
  将支撑蓄热体的普碳钢箅子,改为不锈钢材料(RTCr1.5)制作, 并对支架结构进行优化,提高支架刚度。将陶瓷小球蓄热体改为陶瓷蜂窝体。高、中温段的蜂窝体材质为热熔铸刚玉质材料,保证有较高的耐火度和良好的抗渣性。中、低温段则采用堇青石材料,保证有良好的蓄热能力和抗热震性。
  3.4 将蓄热体由小球改为蜂窝体,这样不仅减小了燃气阻力间接增加了燃料摄入量,还解决了蓄热体被吹入炉内的风险。蜂窝体的稳定存在,有力保证了蓄热效果和排烟温度,既能很好的将冷空、煤气预热到很高的温度,又能吸收烟气的余热降低排烟温度。由小球换为蜂窝体后,排烟温度得到了很好的控制,基本保持在130—150℃。
  3.5 将均热段的集中换向改为分散换向,解决了集中换向时炉压波动大的问题。增加辅助烟囱,加热炉运行后期炉压很难控制时,依靠辅助烟囱得以有效控制。选择性能好的蜂窝体,避免在生产中由于蓄热体的破碎和板结造成排烟阻力的增加。根据蓄热式加热炉的特点,充分考虑防止后期排烟阻力增加等炉子老化的需要,对引风机抽力留出一定富裕。综合考虑,将原风机更换为了较大型号的引风机。并对操作人员进行技术培训,使其克服不良的操作习惯。通过以上改进,使炉压基本保持在微正压20Pa左右。炉压得到了有效控制,冒火现象也不再发生。
  4 结束语
  通过对加热炉的改造提高了加热炉的作业率,降低了成本,解决了轧钢生产上的瓶颈问题。同时,也为其他加热炉的改进提供了可借鉴经验。
  参考文献
  [1]王秉铨.工业炉设计手册[M].北京机械工业出版社,1996.
  [2]蔡乔方.加热炉第二版[M].北京冶金工业出版社,1996.

猜你想看
相关文章

Copyright © 2008 - 2022 版权所有 职场范文网

工业和信息化部 备案号:沪ICP备18009755号-3