当前位置:首页 > 发言稿 > 射频功率放大器设计 [InGaP/GaAs,HBT射频功率放大器在片温度补偿电路研究]
 

射频功率放大器设计 [InGaP/GaAs,HBT射频功率放大器在片温度补偿电路研究]

发布时间:2019-02-16 04:40:17 影响了:

  摘要:本文针对无线通信应用的InGaP/GaAs HBT射频功率放大器,提出一种新型的在片温度补偿电路。该温度补偿电路由一个GaAs HBT和五个阻值大小不同的电阻组成,结构简单,可实现性强。通过调整偏置电路中参考电压的方法调节功率放大器静态偏置电流,有效地实现补偿功率放大器功率增益和输出功率随温度变化的特性,优化了射频功率放大器的热特性,性能随温度只有略微的退化。将该温度补偿电路置入一个无线通信应用的三级单片集成功率放大器,温度在-20℃到+80℃范围内变化时,增益随温度变化的变化量从4.3dB提高到只有1.1dB。
  关键词:GaAs HBT;功率放大器;温度补偿电路;在片
  
  Abstract:A new on-chip temperature compensation circuit for GaAs-based HBT RF amplifier applied to wireless communication was presented. The simple compensation circuit is composed of one GaAs HBT and five resistors with various values, which allows the power amplifier to achieve better thermal characteristics with a little degradation in performance. It effectively compensates for the temperature variation of the gain and the output power of the power amplifier by regulating the base quiescent bias current. The temperature compensation circuit is applied to a 3-stage integrate power amplifier for wireless communication application, which results the gain variation improved from 4.3dB to 1.1dB in the temperature range between -20℃ and +80℃.
  Key word: GaAs HBT; power amplifier; temperature compensation; on chip;
  
  1引言
  
  随着信息技术的发展,对功率放大器的需求量日益增大[1,2],并且对功率放大器提出越来越高的要求[3]。众所周知, InGaP/GaAs HBT射频功率放大器的功率增益和输出功率都严重地受到外界环境温度的影响[4]。因此,提高功率放大器的热稳定性显得尤为重要。目前提高射频功率放大器温度补偿的方法,一般采用片外元件控制功率放大器的偏置电流或者输入信号的方式调节功率增益和输出功率,实现温度补偿作用。这种片外调节的方式将使功率放大器模块体积更加臃肿。为了提高集成度,实现功率模块的小型化,将温度补偿电路于功率放大器在同一单片内实现已经成为一种趋势[4 - 6]。
  本文基于无线通信系统的应用,提出一种应用于InGaP/GaAs HBT射频功率放大器的在片温度补偿电路结构。这种温度补偿电路由一个GaAs HBT和五个阻值大小不同的TaN薄膜电阻组成,通过实现调节基极静态偏置电流的方式实现对功率放大器的温度补偿。通过这种在片的方式实现温度补偿,大大提高了功率放大器的集成度,既有利于提高电路性能,更有利于节省成本。
  
  2GaAs HBT VBIC 大信号模型
  
  实验采用由稳懋半导体提供的商用化的GaAs HBT VBIC大信号模型进行模拟仿真,该模型包括基于G-P模型的HBT本征晶体管和衬底寄生晶体管两部分。图1示出GaAs HBT VBIC大信号模型的等效电路图。等效电路除了晶体管本征部分和衬底寄生晶体管之外,还包括热效应等效网络和剩余相位网络。本实验中采用VBIC大信号模型具有如下特点:精确模拟基区宽度调制效应;准确表征寄生衬底晶体管;提高Kirk效应的HBT准饱和特性;增强电子渡越时间模型;近似的分布式基极描述;弱化雪崩电流效应;小信号相位漂移以及瞬态分析相位漂移的一致性处理;改进的空间电荷电容模型;准确模拟自热效应;改善的温度模型。
  为了准确地描述外部环境温度变化引起的热效应以及自热效应,GaAs HBT VBIC模型专门针对这种现象建立了与外部环境温度相关和异质结结温相关的热等效网络,如图1所示。
  
  3温度补偿电路
  
  由于InGaP/GaAs HBT具有很强的热敏感性,器件性能受外部环境温度以及自热效应的影响很明显,从而导致基于InGaP/GaAs HBT研制的射频功率放大器增益明显的受环境温度影响。图2(a)示出单级功率放大器的小信号增益随环境温度变化的特性曲线,由图可以看出,随着温度的增加增益急速下降。这被认为与HBT器件的跨导变化莫大的关系,因为对于GaAs基HBT器件而言,静态偏置电流会随温度的增加而减小,从而导致器件跨导随之减小。众所周知,功率放大器的增益与器件的跨导呈之比。因此调节HBT器件的跨导是改善放大器功率增益随温度变化的有效手段。图2(b)示出AB类工作的功率放大器小信号增益与基极静态偏置电流的关系曲线。由图可以看出基极静态偏置电流的微量增加,会导致功率放大器增益的显著提升。这同样是因为HBT器件跨导的变化引起的,因为对于工作在AB类的功率放大器而言,HBT器件的跨导随着静态配置电流的增加而显著增加。由此可见,可以通过调节功率放大器的基极静态偏置电流的方法,提高HBT器件跨导,从而有效地改进放大器功率增益的温度特性,因此,在功率放大器HBT器件的基极偏置端添加一个温度补偿电路调节基极静态偏置电流显得非常必要。
   图3示出InGaP/GaAs HBT射频功率放大器带温度补偿结构的射极跟随器型偏置电路原理图,其中黑色虚线框内为温度补偿结构。该偏置电路由一个InGaP/GaAs HBT和五个阻值大小各不相同的TaN薄膜电阻组成。由晶体管HBT Q2的基极电压Vs决定Q2的发射极电流,由发射极电流和发射极电阻共同决定偏置电路的辅助电压Vaux,通过辅助电压Vaux和辅助电阻Raux调节射极跟随器型偏置电路中二极管结构连接的晶体管D2的集电极电压V1。
  对于射极跟随器型偏置电路,功率放大器的基极静态电流主要由发射极跟随器晶体管Q1的输入电阻和基极电压V2决定。随着外部环境温度的改变,温度补偿电路通过调节电压V1的方法,进而调节晶体管Q1的基极电压V2和功率放大器晶体管QRF的基极电压Vin,从而调节功率放大器晶体管QRF的基极静态偏置电流,实现增强功率放大器的功率增益随环境温度变化的稳定性的目的。对于温度补偿电路而言,需要对晶体管Q2各端选择合适的电阻值,确保在室温条件下辅助电阻Raux两端电压Vaux等于V1。
  当温度升高时,温度补偿电路节点aux的电压Vaux减小速度低于V1的减小速度,致使Vaux大于V1,因此有附加电流从节点aux流向节点1,从而提高节点1的电压V1,进一步提高电压V2和功率放大器晶体管QRF基极电压Vin。一方面,提高电压V2会使得参考电阻Rref两端电压降低,减小参考电流Iref;另一方面,提高Q1的基极电压V2和QRF的基极电压Vin,使得晶体管Q1的基极和发射极两端电压增加,降低晶体管Q1的基极电阻,从而提高晶体管Q1的基极电流,进而提高功率放大器晶体管QRF的基极静态偏置电流。反之,当温度降低时,电压Vaux低于V1,因此有附加电流从节点1流向节点aux,从而使得电压V1、V2和Vin都将降低,导致晶体管Q1的基极电流减小,进而降低功率放大器晶体管QRF的基极静态偏置电流。
  特别需要提及的是,对于调节高温和低温条件下的的功率增益大小,辅助电阻Raux阻值的选取非常重要,合适的阻值能将电阻Raux两端的电压差调节到需要的值,达到高温和低温时的功率增益没有明显差异。
  
  4结果与讨论
  
  为了验证上述提出的温度补偿电路的可行性,将温度补偿电路应用到实际功率放大器电路中。图4示出应用于无线通信系统的单片集成射频功率放大器的原理图。对于射频功率放大器而言,需要尽可能的得最高的效率和最高增益。为了实现这个目标,功率放大器的晶体管选择合适的发射极面积,并设法使功率放大器工作在AB类。实现将温度补偿电路与射频功率放大器集成在单颗GaAs基片上。
  基于稳懋半导体公司提供的商用InGaP/GaAs HBT VBIC大信号模型,分别对有无温度补偿结构的射频功率放大器进行仿真。图5示出有无温度补偿结构的射频功率放大器在环境温度为-20℃, 25℃ 和+85℃条件下的小信号S21参数,其中图5(a)为没有温度补偿结构的S21参数,图5(b)为有温度补偿结构的S21参数。由图可以看出温度补偿结构能有效地减小小信号S21参数随温度变化的变化量。图6示出有无温度补偿结构的射频功率放大器功率增益随温度变化的特性,其中实线为没有温度补偿结构,虚线为有温度补偿结构。由图可以看出,当温度从-20℃ 增加到 +85℃时,没有温度补偿结构的功率放大器增益从14.3dB下降到12.8dB,下降量为1.5dB,而有温度补偿结构的功率放大器增益从13.7dB下降到13.4dB,下降量只有0.3dB。由此看出,温度补偿结构使得功率放大器的功率增益随温度的变化的稳定性大大提高。图7(a)(b)分别示出有无温度补偿结构的功率放大器功率特性曲线,其中图7(a)没有温度补偿结构,图7(b)有温度补偿结构。由图可以看出,引入温度补偿结构,使得功率放大器在不同输入信号条件下的的功率增益、输出功率和效率随温度的变化量都大幅度减小。由图可以看出,在-20℃到+85℃的温度范围内变化时,具有温度补偿结构功率放大器的输出功率能稳定在37.7dBm以上,同时功率附加效率PAE在57%以上。从上述系列的结果可以看出,这种结构简单的温度补偿电路非常适合应用于无线通信系统的射频功率放大器。
  
  5结论
  
  本文提出一种应用于InGaP/GaAs HBT射频功率放大器的温度补偿电路,这种温度补偿电路具有结构简单,与功率放大器电路集成在同一个单片芯片的特点。采用该温度补偿电路通过调节功率放大器的基极静态偏置电流的方式补偿放大器功率增益随环境温度的变化,有效地提高功率放大器的热特性。将温度补偿电路应用到实际射频功率放大器中,使得在温度范围-20℃到+85℃内变化时,功率放大器的功率增益随温度的变化量从1.5dB下降到只有0.3dB,功率放大器的输出功率能稳定在37.7dBm以上。本文提出的温度补偿电路是一种非常适合应用于无线通信系统的射频功率放大器的温度补偿结构。
  
  参考文献
  [1] F. Ali, A. Gupta, A. Higgins, "Advances in GaAs HBT power amplifiers for cellular phones and military applications," 1996 IEEE MTT-S Microwave Symp. Dig., pp. 61-66, June 1996.
  [2] A. Bezooijen, A. V. Bezooijen, D. Prikhodko, et.al, “Biasing circuits for voltage controlled GSM power amplifiers,” in Proc. 11th GAAS Symp., Munich 2003. 6-10 October 2003,
  [3] Gary Zhang, Sabah Khesbak, Anil Agarwal,et al. “Evolution of RFIC Handset Pas”, IEEE Microwave Magazine pp.60-69, February 2010.
  [4] Kamhisa Yamauchi, Yoshitada Iyama, Mamiko Yamaguchi, et al. “X-band MMIC Power Amplifier with an On-chip Temperature Compensation Circuit”. IEEE Transactions Microwave Theory and Techniques, pp.2501-2506, Dec. 2001
  [5] J. Jeon, J. Kim and Y. Kwon, “Temperature compensating bias circuit for GaAs HBT RF power amplifiers with stage bypass architecture” ELECTRONICS LETTERS pp. 1141-1143 September 2008
  [6] Wang, N.L.: ‘Temperature compensated current mirror’. US Patent 6 556 082, April 29, 2003
  [7] WIN Semiconductors Corp. “HBT3 H02U-41 InGaP/GaAs HBT Model Handbook” Ver.1.0.1 July, 2008
  
  作者简介
  李诚瞻,博士,毕业于中国科学院微电子研究所,从事微波及射频集成电路研究,目前供职于广州润芯信息技术有限公司。

猜你想看
相关文章

Copyright © 2008 - 2022 版权所有 职场范文网

工业和信息化部 备案号:沪ICP备18009755号-3