当前位置:首页 > 心得体会 > 液压控制系统中自组织双模糊神经网络控制模型关键点研究_自组织竞争神经网络
 

液压控制系统中自组织双模糊神经网络控制模型关键点研究_自组织竞争神经网络

发布时间:2019-06-12 03:58:52 影响了:

  摘 要: 越来越多的工业液压控制系统对控制精度和响应速度提出高要求,针对按照预设流量和压力进行精确控制的液压系统,阐述一种基于自组织双模糊神经网络的闭环控制模型,并对其中的系统模型、控制模型、神经网络模型和执行机构模型四个关键点进行详细阐述。
  关键词: 闭环液压控制系统;自组织双模糊神经网络;执行机构
  中图分类号:TU984 文献标识码:A 文章编号:1671-7597(2012)0720088-02
  0 引言
  液压控制在工业系统中的地位不言而喻,提高系统精度和响应速度是液压控制领域有待持续性研究的课题。针对按照预设流量和压力进行精确控制的液压系统,本文提出一种基于Mamdani型模糊神经网络和多线程思想的闭环自组织双模糊神经网络液压系统模型,其关键点是模糊神经网络控制模型和执行机构。
  1 液压系统模型
  液压系统采用挤压式液体供给方式,由工控机、增压气体贮箱、液体贮箱、流量控制阀、流量和压力检测装置和气体传送管道组成闭环系统,如图1所示。
  该液压系统模型工作原理是:将增压惰性气体压入液体贮箱,其进入液体贮箱时的流量和压力由阀门控制,惰性气体推动液体贮箱中的隔板,迫使隔板另一侧的液体进入传送管道,并顺管道进入液体使用对象。假设液体贮箱中是理想流体,根据理想流体伯努利方程,可知,通过调节液体贮箱压力,能够改变液体使用对象入口处液体压力,因此,通过调节增压气体流量可达到调节液体进入液体使用对象时流量和压力的目的。液体贮箱和液体使用对象之间安装有压力计和流量计,能够测得当前实际压力和流量,计算机将其与预设压力和流量进行对比,按照一定的算法得出增压气体流量调节方案。
  2 模糊神经网络控制模型
  2.1 控制模型
  根据液压系统模型工作原理,闭环控制系统输入数据为预设压力、预设流量、实际压力和实际流量,根据模糊控制原理,可将以上四个数据转化为压力差、压力差变化率、流量差、流量差变化率,由这四个分量组成的输入数据作为闭环控制算法的输入向量,对执行机构的指令为该算法的输出向量。
  模糊神经网络不依赖精确的数学模型,能够通过学习优化自身性能,在逻辑上能够实现并行计算等优点[1],本文提出一种基于模糊神经网络的液压控制器模型,该模型由两组独立的模糊神经网络并联组成双模糊神经网络,在初始时刻,这两组模糊神经网络具有相同的结构和网络连接权值,在控制系统运行过程中,两组模糊神经网络分别承担系统学习和控制任务,经过一定系统周期后,同步两组模糊神经网络参数。
  综上所述,控制模型如图2所示。
  在图2中,X表示输入向量,含有四个分量:x1、x2、x3和x4,分别表示压力差、压力差变化率、流量差和流量差变化率,这四个分量综合作为模糊神经网络控制器的输入向量。在图2中,虚线框中的部分为双模糊神经网络,其中Layer1为接收传感器数据 的输入层;Layer2为两个具有相同结构的自组织模糊神经网络层;Layer3为输出控制信号
  的输出层。
  2.2 模糊神经网络模型
  传统基于模糊控制步骤的模糊神经网络常由五层构成,但是,三层BP神经网络可以逼近几乎所有的非线性系统,所以设置五层神经网络不但使系统复杂化,而且增加了神经网络逼近稳定状态的难度[2,3],因此,设计模型由输入层、隶属函数层、输入越界判断层、模糊规则层和输出层组成,可调节连接权值只出现在模糊规则层和输出层之间,其余各神经元间的连接权值均为1且不可调,本模型包含一层真正意义上的神经网络,既简化了神经网络结构又按照模糊控制步骤设计;但是隶属函数和模糊规则实际上仍然属于模糊控制范畴,不但需要在设计初期就确定下来并且在系统运行过程中不会被优化,本文根据文献[4]提出的一种剪枝算法,通过专用算法调整神经网络中神经元的个数,解决了隶属函数和模糊规则在系统运行过程中的优化问题;为了处理意外出现的越界参数,在隶属函数层后增加越界参数判断层,越界参数判断层的输出汇总后作为处理越界参数的依据。
  因此,以模糊控制步骤为基础,构造四层类神经网络,四层分别是输入层、隶属函数层、模糊规则层和输出层,模糊规则层神经元和输出层神经元之间有可变连接权值;因为隶属函数和模糊规则相互对应,因此将模糊规则层输出数据作为隶属函数和模糊规则调整的依据,基于以上考虑,本文提出的模糊神经网络模型结构如图3所示。
  在图3中,两个矩形分别代表隶属函数与规则调整算法和输入越界处理算法,圆形代表神经元。与一般模糊神经网络结构不同的是第二层隶属函数层的输出数据连接两层不同的神经网络层;第四层规则层的输出数据分别连接输出层神经元和隶属函数与规则调整算法。
  该模糊神经网络结构共有五层神经元节点和两个结构调整算法,各部分结构分别描述如下:
  1)第一层:输入层,本层共有n个神经元,对应输入数据中的n维向量,本层只完成输入数据的接收功能,直接将输入数据传入下一层,不对输入数据进行任何计算,没有传递函数。
  2)第二层:隶属函数层,神经元个数动态调整,本层模糊化输入向量,该层的每一个神经元代表隶属函数覆盖的一个区域,每一个第一层的神经元都有对应的隶属函数层神经元群,输入向量对本层某神经元的激发度对应于该输入向量在该神经元所表示的模糊区域的隶属度。
  3)第三层:越界输入向量判断层,本层共有n个神经元,对应输入数据中的n维向量,判断某个输入向量是否超出现有的隶属函数覆盖区域,如果超出,则进入输入越界算法,否则不做运算。
  4)第四层:模糊规则层,神经元个数动态调整,完成模糊推理规则的前件。对于一组n维的输入向量,激活了第二层隶属函数层中若干个神经元,这些被激活的神经元打通了与第四层模糊规则层中神经元的连接,第四层中被激活的神经元可以认为是处理该组输入向量最佳的模糊规则群。
  5)第五层:输出层,共有一个神经元,按照一定的原则将所有模糊规则层神经元的输出进行运算,最后得出整个模糊神经网络的输出结果。

猜你想看
相关文章

Copyright © 2008 - 2022 版权所有 职场范文网

工业和信息化部 备案号:沪ICP备18009755号-3